中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊
中国建筑科学领域高质量科技期刊分级目录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轻钢结构屋顶光伏改造中应用预应力碳纤复材板增强檩条的设计方法

胡黎俐 冯鹏 庄江波

胡黎俐, 冯鹏, 庄江波. 轻钢结构屋顶光伏改造中应用预应力碳纤复材板增强檩条的设计方法[J]. 工业建筑, 2023, 53(9): 138-148. doi: 10.13204/j.gyjzG22102603
引用本文: 胡黎俐, 冯鹏, 庄江波. 轻钢结构屋顶光伏改造中应用预应力碳纤复材板增强檩条的设计方法[J]. 工业建筑, 2023, 53(9): 138-148. doi: 10.13204/j.gyjzG22102603
HU Lili, FENG Peng, ZHUANG Jiangbo. Design Method of Prestressed CFRP-Reinforced Purlins in Reconstruction of Photovoltaic System for Light-Gauge Steel Structure Roofs[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 138-148. doi: 10.13204/j.gyjzG22102603
Citation: HU Lili, FENG Peng, ZHUANG Jiangbo. Design Method of Prestressed CFRP-Reinforced Purlins in Reconstruction of Photovoltaic System for Light-Gauge Steel Structure Roofs[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 138-148. doi: 10.13204/j.gyjzG22102603

轻钢结构屋顶光伏改造中应用预应力碳纤复材板增强檩条的设计方法

doi: 10.13204/j.gyjzG22102603
基金项目: 

国家自然科学基金项目(52108227);青年人才托举工程(2022QNRC001)。

详细信息
    作者简介:

    胡黎俐,女,1991年出生,博士,副教授。

    通讯作者:

    冯鹏,fengpeng@tsinghua.edu.cn。

Design Method of Prestressed CFRP-Reinforced Purlins in Reconstruction of Photovoltaic System for Light-Gauge Steel Structure Roofs

  • 摘要: 基于大量既有工业建筑轻钢结构屋顶光伏改造的工程背景,应用普通和顶撑两类预应力碳纤复材板增强技术对其檩条进行增强。前者使用千斤顶张拉碳板施加预应力,增强后碳板紧贴檩条下翼缘;后者使用跨中顶撑张拉碳板施加预应力,增强后跨中碳板远离檩条下翼缘而呈现三角形状。为研究两种方法,首先,分析了两类增强技术的增强机理。然后,基于我国现有规范,应用直接强度法考虑了局部屈曲和强度破坏相关性,并考虑了碳板变形造成的预应力增加,从而得到了两类增强方法增强后檩条的承载力及变形计算方法,并证明了该方法的准确性,同时获得了参数影响规律:碳板刚度越大、撑出长度越大、预应力越大、增强效果越好。基于此,考虑增强阶段最大预应力、碳板强度及增强檩条变形等实际限制条件,建立了预应力碳板增强檩条的设计方法,针对光伏改造工程下檩条的强度增强或局部屈曲增强给出设计算例。通过设计算例的比较,得到了两类增强方法的不同适用条件,发现顶撑增强更容易实现承载力和刚度的大幅度提升,可供工程参考。
  • [1] MENG X M, ZHANG D B, FENG P, et al. Review on mechanical behavior of solar cells for building integrated photovoltaics[J]. Sustainable Structures,2021,1(2):1-19.
    [2] 祝敬国. 光伏发电示范新能源:首都博物馆新馆300 kW太阳能光伏系统工程设计[J]. 建设科技, 2005(5):20-21.
    [3] 吴越. 新能源崛起光伏建筑一体化加速走来[N]. 中国建材报,2022-01-24(001).
    [4] 中华人民共和国住房和城乡建设部. 对十三届全国人大五次会议第2254号建议的答复[EB/OL]. (2022-06-21

    )[2022-09-19] https://www.miit.gov.cn/zwgk/jytafwgk/art/2022/art_c2206761ca1248848969014a6aa3510b.html.
    [5] 中华人民共和国住房和城乡建设部. 钢结构加固设计标准:GB 51367-2019[S]. 北京:中国建筑工业出版社,2019.
    [6] TALL L. The reinforcement of steel columns[J]. Engineering Journal, 1989,26(1):33-37.
    [7] MARZOUK H, MOHAN S. Strengthening of wide-flange columns under load[J]. Canadian Journal of Civil Engineering, 1990,17(5):835-843.
    [8] 王元清, 祝瑞祥, 戴国欣, 等. 初始负载下焊接加固工字形截面钢柱受力性能试验研究[J]. 建筑结构学报, 2014,35(7):78-86.
    [9] 卢亦焱,陈莉,高作平, 等. 外粘钢板加固钢管柱承载力试验研究[J]. 建筑结构, 2002(4):54-56.
    [10] MAQUOI R, SKALOUD M. Stability of plates and plated structures:general report[J]. Journal of Constructional Steel Research, 2000,55(1/2/3):45-68.
    [11] ZHAO X L. FRP-strengthened metallic structures[M]. Melboume:CRC Press,2013.
    [12] 王毅, 冯鹏, 牛荻涛, 等. 电厂脱硫环境下FRP拉挤型材的长期性能研究[J]. 玻璃钢/复合材料, 2012(1):130-134.
    [13] KOOTSOOKOS A, MOURITZ A P. Seawater durability of glass- and carbon-polymer composites[J]. Composites Science and Technology, 2004, 64(10):1503-1511.
    [14] MILLER T C, CHAJES M J, MERTZ D R, et al. Strengthening of a steel bridge girder using CFRP plates[J]. Journal of Bridge Engineering, 2001,6(6):514-522.
    [15] TAVAKKOLIZADEH M,SAADATMANESH H. Fatigue strength of steel girders strengthened with carbon fiber reinforced polymer patch[J]. Journal of Structural Engineering, 2003, 129(2):186-196.
    [16] LENWARI A, THEPCHATRI T, ALBRECHT P. Debonding strength of steel beams strengthened with CFRP plates[J]. Journal of Composites for Construction, 2006,10(1):69-78.
    [17] SALLAM H E M, AHMAD S S E, BADAWY A A M, et al. Evaluation of steel I-beams strengthened by various plating methods[J]. Advances in Structural Engineering, 2006, 9(4):535-544.
    [18] SCHNERCH D, RIZKALLA S. Flexural strengthening of steel bridges with high modulus CFRP strips[J]. Journal of Bridge Engineering, 2008, 13(2):192-201.
    [19] RAGHEB W F. Elastic local buckling of steel I-sections strengthened with bonded FRP strips[J]. Journal of Constructional Steel Research, 2015, 107:81-93.
    [20] RAGHEB W F. Inelastic local buckling and rotation capacity of steel I-beams strengthened with bonded FRP sheet[J/OL]. Journal of Composites for Construction, 2017, 21(1)[2017-04-16] http://doi. org/10.1061/(ASCE)CC.1943-5614.0000716.
    [21] KIANMOFRAD F, GHAFOORI E, ELYASI M M, et al. Strengthening of metallic beams with different types of prestressed unbonded retrofit systems[J]. Composite Structures, 2017, 159:81-95.
    [22] GHAFOORI E, MOTAVALLI M. Lateral-torsional buckling of steel I-beams retrofitted by bonded and unbonded CFRP laminates with different prestress levels:Experimental and numerical study[J]. Construction & Building Materials, 2015, 76:194-206.
    [23] GHAFOORI E, MOTAVALLI M. Normal, high and ultra-high modulus carbon fiber-reinforced polymer laminates for bonded and un-bonded strengthening of steel beams[J]. Materials & Design, 2015, 67:232-243.
    [24] 吴涛. 预应力碳纤维布加固钢梁抗弯性能研究[D]. 武汉:武汉大学,2005.
    [25] 王德选. 预应力CFRP布加固钢箱梁与混凝土组合梁力学性能[D]. 沈阳:东北大学,2009.
    [26] ZHENG B, DAWOOD M. Fatigue repair of metallic structures with a thermally-activated shape memory alloy(SMA)/carbon fiber reinforced polymer(CFRP) patch[C]//Proceedings of the CICE. Hongkong:2016.
    [27] 罗中良. 波形齿锚具对大吨位CFRP片材的锚固性能试验研究[D]. 重庆:重庆大学,2009.
    [28] 哈娜. CFRP布加固钢骨混凝土梁及耐久性研究[D]. 沈阳:东北大学,2010.
    [29] 霍君华. 预应力CFRP布加固腐蚀钢梁及组合梁的力学性能[D]. 沈阳:东北大学,2011.
    [30] GHAFOORI E, MOTAVALLI M. Innovative CFRP-prestressing system for strengthening metallic structures[J/OL]. Journal of Composites for Construction, 2015, 19(6)[2015-04-15]. http://doi.org/10.1061/(ASCE)CC.1943-5614.0000559.
    [31] ZHU P, FAN H, ZHOU Y. Flexural behavior of aluminum I-beams strengthened by pre-stressed CFRP tendons[J]. Construction & Building Materials, 2016, 122:607-618.
    [32] HU L, FENG P, GAO W, et al. Flexural behavior of light steel purlins reinforced by prestressed CFRP laminates[J/OL]. Thin-Walled Structures, 2022, 174[2022-10-01]. https://doi.org/10.1016/j.tws.2022.109125.
    [33] 中华人民共和国住房和城乡建设部. 钢结构设计标准:GB 50017-2017[S]. 北京:中国建筑工业出版社,2018.
    [34] AISI. North American specification for the desgin of cold-formed steel structural members[S]. Canada CSA Group and Mexico Canacero,2016.
    [35] British Constructional Steelwork Association Ltd. Structural use of steelwork in building, code of practice for design of cold-formed thin gauge sections:BS 5950-5:2000[S]. London:British Standards Institution, 2000.
    [36] 中华人民共和国建设部. 冷弯薄壁型钢结构技术规范:GB 50018-2002[S]. 北京:中国计划出版社,2002.
    [37] 中华人民共和国住房和城乡建设部. 低层冷弯薄壁型钢房屋建筑技术规程:JGJ 227-2001[S]. 北京:中国建筑工业出版社,2011.
    [38] 徐子风. 冷弯薄壁型钢偏压构件稳定性能与直接强度法[D]. 沈阳:沈阳建筑大学,2014.
    [39] 朱正伟. 基于能量法的体外预应力筋应力增量计算方法研究[D]. 重庆:重庆大学,2005.
    [40] 刘钊, 贺志启, 王景全. 基于能量法的体外预应力梁力筋应力增量研究[J]. 东南大学学报(自然科学版), 2008,38(1):136-140.
    [41] SOUDKI K, SCHUMACHER A, MOTAVALLI M. Flexural strengthening of a steel beam with prestressed strips-preliminary investigation[C]//9th International symposium on fiber reinforced polymer reinforcement for concrete structures (FRPRCS9). Sydney:2009.
  • 加载中
计量
  • 文章访问数:  131
  • HTML全文浏览量:  65
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-26
  • 网络出版日期:  2023-11-08

目录

    /

    返回文章
    返回