Research on Restoring Force Models of Reinforced Self-Stressing Steel Slag Concrete Columns Confined with Circular Steel Tubes
-
摘要: 开展了10根圆钢管约束钢筋自应力钢渣混凝土柱和4根圆钢管约束钢筋钢渣混凝土柱的低周反复加载试验,分析了轴压比、剪跨比、径厚比和钢渣混凝土膨胀率对试件破坏形态和滞回性能的影响。结果表明,所有试件均发生弯曲破坏,破坏范围集中于预留缝区域。随着轴压比和径厚比减小,或剪跨比和钢渣混凝土膨胀率增大,试件的荷载-位移滞回曲线饱满度提高。试件承载力随着轴压比、径厚比和核心钢渣混凝土膨胀率增大而增大,而侧向变形能力随着轴压比和径厚比增大有所降低。随后,在试验研究基础上,考虑轴压比、剪跨比、径厚比和钢渣混凝土膨胀率的影响,提出试件荷载-位移骨架曲线特征点简化计算公式。并基于退化三线型恢复力模型,提出试件滞回规则,建立其荷载-位移恢复力模型,恢复力模型计算结果与试验值吻合良好。Abstract: The seismic performence of ten reinforced self-stressing steel slag concrete columns confined with circular steel tubes and four reinforced steel slag concrete columns confined with circular tubes under quasi-static loading were tested. The effects of axial compression ratio, shear-span ratio, diameter-thickness ratio and expansion rate on the failure mode and hysteretic behavior were analyzed. The results showed that the flexural failure was observed in all specimens, and the damage was concentrated in the reserved gap. The fullness of the hysteretic curves increased as the decrease in the axial compression ratio, diameter-thickness ratio or the increase in the shear-span ratio and the expansion rate. The bearing capacity of the specimens increased with the increase of the axial compression ratio, diameter-thickness ratio and expansion rate, while the lateral deformation capacity decreased with the increase in axial compression ratio and diameter-thickness ratio. Subsequently, based on the experiment results, the simplified load-displacement skeleton curves were proposed considering the effects of axial compression ratio, shear-span ratio, diameter-thickness ratio and expansion rate. Moreover, according to the degraded tri-linear restoring force model, the hysteretic rules of the specimens were proposed, the restoring force model for reinforced self-stressing steel slag concrete columns confined with circular steel tubes was established, and the calculated results of the restoring force model were in good agreement with the experimental values.
-
[1] HAN L H, TAO Z, YAO G H. Behaviour of concrete-filled steel tubular members subjected to shear and constant axial compression[J]. Thin-Walled Structures, 2008, 46(3): 765-780. [2] HASSANEIN M F, PATEL V I, HADIDY A M E, et al. Structural behaviour and design of elliptical high-strength concrete-filled steel tubular short compression members[J]. Engineering Structures, 2018, 173(10): 495-511. [3] GAO W Q, ZHAO J H, FAN J C, et al. A theoretical model for predicting mechanical properties of circular concrete-filled steel tube short columns[J]. Structures, 2022, 45:572-585. [4] 刘永健, 孙立鹏, 周绪红, 等. 钢管混凝土桥塔工程应用与研究进展[J]. 中国公路学报, 2022, 35(6): 1-21. [5] TOMII M, SAKINO K, XIAO Y, et al. Earthquake resisting hysteretic behavior of reinforced concrete short columns confined by steel tube[C]//Proceeding of the International Speciality Conference on Concrete Filled Steel Tubular Structures. Harbin, China:1985: 119-125. [6] 肖岩, 郭玉荣, 何文辉, 等. 局部加劲钢套管加固钢筋混凝土柱的研究[J]. 建筑结构学报, 2003, 24 (6): 79-86. [7] HAN L H, LIU W, YANG Y F. Behavior of thin-walled steel tube confined concrete stub columns subjected to axial local compression[J]. Thin-Walled Structures, 2008, 46(2): 155-164. [8] ZHU J Y, CHAN T M. Experimental investigation on steel-tube-confined-concrete stub column with different cross-section shapes under uniaxial-compression[J]. Journal of Constructional Steel Research, 2019, 162(11): 1-14. [9] 赵迪, 张纪刚, 时成龙, 等. 钢管约束混凝土组合结构研究现状[J]. 建筑结构, 2023, 53(3): 41-51. [10] 王静峰, 刘伟, 沈奇罕, 等. 考虑环向脱空影响的椭圆钢管混凝土短柱轴压性能研究[J]. 建筑结构学报, 2023, 44(2): 50-63. [11] MWAFY A, AMR E D, LAZKANI, et al. Behavior of expansive concrete-filled steel tubular columns under axial loadings[J]. Journal of Resilient Structures and Sustainable Construction, 2017, 136(4): 277-285. [12] 王湛. 钢管膨胀混凝土工作机理及性能的研究[D]. 哈尔滨: 哈尔滨建筑大学, 1993. [13] 郑宇宙, 陈力, 祝小龙, 等. 高强钢管约束自应力混凝土短柱轴压性能试验[J]. 工程科学与技术, 2022, 54(4): 56-63. [14] 蒙春贵, 彭林欣, 滕晓丹. 基于统一强度理论的钢管自应力混凝土柱极限承载力研究[J]. 工业建筑, 2022, 52(1): 26-30, 38. [15] 陈咏明, 曹国辉. 膨胀剂对钢管混凝土圆柱轴压承载能力试验研究[J]. 建筑结构, 2022, 52(增刊1) :1355-1359. [16] PRASANTA K, ARUN C B, KONJENGBAM D S. Experimental investigation of partially confined concrete-filled steel tubular square columns under lateral cyclic loading[J]. Journal of Constructional Steel Research, 2023, 201, 107751. [17] ROYCHAND R, KUMAR P B, ZHANG G M, et al. Recycling steel slag from municipal wastewater treatment plants into concrete applications-A step towards circular economy[J]. Conservation and Recycling, 2020, 152(1): 1-7. [18] ZHU J P, GUO Q L, GAO X, et al. Influence of steel slag on compressive strength and durability of concrete[J]. Materials Science Forum, 2011(12), 704-705: 1051-1054. [19] 方圆, 于峰, 张扬, 等. 圆钢管自应力钢渣增强混凝土柱的受力机制及承载力计算[J]. 复合材料学报, 2020, 37(5): 1211-1220. [20] YU F, FANG Y, NIU K, et al. Experimental study on bond-slip constitutive relation of SSSCFST columns[J]. Structural Concrete, 2021, 22(4): 2338-2357. [21] FANG Y, YU F, BAI R, et al. Performance and capacity calculation methods of self-stressing steel slag concrete filled tubular short columns subjected to axial load[J]. Advanced Steel Construction, 2021, 17(1):60-66. [22] YU F, CHEN L, BU S S, et al. Experimental and theoretical investigations of recycled self-compacting concrete filled steel tubular columns subjected to axial compression[J]. Construction and Building Materials, 2020, 248(1), 118689. [23] YU F, FANG Y, ZHANG Y, et al. Mechanical behavior of self-stressing steel slag aggregate concrete filled steel tubular stub columns[J]. Structural Concrete, 2020, 21(4): 1597-1611. [24] YU F, YIN L L, FANG Y, et al. Mechanical behavior of recycled coarse aggregates self-compacting concrete-filled steel tubular columns under eccentric compression[J]. Structural Concrete, 2019, 20(6): 2000-2014. [25] YU F, CAO Y, FANG Y, et al. Mechanical behavior of self-stressing steel slag aggregate concrete filled steel tubular short columns with different loading modes[J]. Structures, 2020, 26:947-957. [26] 肖顺, 李向民, 许清风, 等. 套筒灌浆缺陷对预制混凝土柱抗震性能影响的试验研究[J]. 建筑结构学报, 2022, 43(5):112-121. [27] 张阳玺, 李睿喆, 邓明科, 等. 超高性能混凝土加固钢筋混凝土柱抗震性能试验研究[J]. 建筑结构学报, 2023, 44(8):88-98. [28] 于峰, 王旭良, 徐琳, 等. 基于可控膨胀率全钢渣砂混凝土基本性能研究[J]. 硅酸盐通报, 2015, 34(6): 1520-1525. [29] 中华人民共和国住房和城乡建设部.混凝土物理力学性能试验方法标准:GB/T 50081—2019[S].北京:中国建筑工业出版社, 2019. [30] 中华人民共和国住房和城乡建设部.建筑抗震试验规程:JGJ/T 101—2015[S]. 北京: 中国建筑工业出版社, 2015. [31] 欧智菁, 颜建煌, 俞杰, 等. 装配式圆钢管约束混凝土桥墩抗震试验及计算方法研究[J].土木工程学报, 2023, 56(1):77-89. [32] 黄承逵, 常旭, 姜德成. 自应力钢管混凝土中核心钢渣混凝土单轴本构关系[J]. 大连理工大学学报, 2010, 50(1): 81-85. [33] 韩林海. 钢管混凝土结构:理论与实践[M]. 北京: 科学出版社, 2007. [34] RICHART F E, BRANDTZAEG A, BROWN R L. A study of the failure of concrete under combined compressive stresses[R]. Urbana, IL:University of Illinois at Urbana-Champaign, 1928. [35] 尚作庆, 黄承逵, 常旭, 等. 钢管自应力混凝土柱抗震性能试验研究[J]. 地震工程与工程震动, 2008, 28(3):77-81. [36] 贾宏玉, 李爱伟, 李奉阁. 自密实自应力矩形钢管混凝土柱抗震性能试验研究[J]. 硅酸盐通报, 2018, 37(259): 219-224, 235.
点击查看大图
计量
- 文章访问数: 34
- HTML全文浏览量: 1
- PDF下载量: 0
- 被引次数: 0