Calculations on Pile Spacing of Cantilever Anti-Slide Piles and Its Three- Dimensional Numerical Simulations
-
摘要: 为探究合理的抗滑桩的桩间距,在考虑土拱效应的基础上,提出在合理桩间距下,桩端土拱和桩侧土拱同时发挥功效以抵抗滑坡下推力的假设。根据桩间静力平衡条件以及土体Mohr-Coulomb 强度准则,推导出桩间距计算式,并通过工程实例对算式进行验算,在保证一定安全度的情况下,证实了算式的合理性,并分析了桩间距计算式内各参数对桩间距的影响;而后通过三维数值模拟的分析,进一步证实了桩间距计算式的合理性。结果表明:在合理桩间距下,桩间距随着土体黏聚力、抗滑桩正面宽度、侧面宽度的增大而线性递增,随着土体内摩擦角的增大而呈二次曲线式递增,随着滑坡均布推力的增大而呈二次曲线式递减。三维数值模拟证实:随着桩间距的增大,土拱效应逐渐减弱,抗滑桩的抗滑效果逐渐降低;随着桩间距增大,桩侧土体的位移愈来愈大,且越靠近土拱中段,位移变化愈大,而桩端处位移则受桩间距影响较小,在远离抗滑桩的区域相较于更近的区域,土体位移变化幅度较小。
-
关键词:
- 桩间距 /
- 抗滑桩 /
- 土拱效应 /
- Mohr-Coulomb强度准则 /
- 三维数值模拟
Abstract: To study the reasonable pile spacing of anti-slide piles, based on the soil arching effect, it was proposed a hypothesis that in the reasonable pile spacing, the soil arches at pile ends and pile sides were simultaneously activated to resist the slide forces of landslides. According to the static equilibrium condition between piles and the Mohr-Coulomb strength criterion of soil,a formula for pile spacing was deduced and checked through engineering cases. In the condition of a certain safety margin, the rationality of the formula was verified. Subsequently, the impact of variable parameters of the formula on pile spacing was analyzed. Eventually, the rationality of the formula was further verified by three-dimensional numerical simulations. The results indicated that in the condition of reasonable pile spacing, the spacing linearly increased with the cohesion of soil, front and side widths and increased with internal friction angles of soil as a quadratic function, and simultaneously, it dropped sharply as a quadratic function with the increase in uniform thrust of landslides. The three-dimensional numerical simulations demonstrated the earth arch effect decreased constantly with the increase in pile spacing, and the anti-slide effect of anti-slide piles also decreased. With the increase in pile spacing, the displacement of soil beside piles was larger and larger, and the closer to the middle section of earth arches, the greater the displacement was. However, the displacement of soil at pile ends was less influenced by pile spacing and changed slightly away from anti-slide piles compared to that closer to anti-slide piles. -
[1] 王成华,陈永波,林立相. 抗滑桩间土拱力学特性与最大桩间距分析[J]. 山地学报, 2001(6):556-559. [2] 周德培,肖世国,夏雄. 边坡工程中抗滑桩合理桩间距的探讨[J]. 岩土工程学报, 2004,26(1):132-135. [3] 赵明华, 陈炳初, 刘建华. 考虑土拱效应的抗滑桩合理桩间距分析[J]. 中南公路工程, 2006(2):1-3. [4] 贾海莉,王成华,李江洪. 基于土拱效应的抗滑桩与护壁桩的桩间距分析[J]. 工程地质学报, 2004(1):98-103. [5] 蒋良潍, 黄润秋, 蒋忠信. 黏性土桩间土拱效应计算与桩间距分析[J]. 岩土力学, 2006,27(3):445-450. [6] 胡晓军, 王建国. 边坡加固工程中抗滑桩间距的确定[J]. 河海大学学报(自然科学版), 2007(3):330-333. [7] 杨明, 姚令侃, 王广军. 抗滑桩宽度与桩间距对桩间土拱效应的影响研究[J]. 岩土工程学报, 2007,29(10):1477-1482. [8] 李邵军, 陈静, 练操. 边坡桩-土相互作用的土拱力学模型与桩间距问题[J]. 岩土力学, 2010,31(5):1352-1358. [9] 赵明华, 廖彬彬, 刘思思. 基于拱效应的边坡抗滑桩桩间距计算[J]. 岩土力学, 2010,31(4):1211-1216. [10] 林治平, 刘祚秋, 商秋婷. 抗滑桩结构土拱的分拆与联合研究[J]. 岩土力学, 2012,33(10):3109-3114. [11] 杨雪强, 吉小明, 张新涛. 抗滑桩桩间土拱效应及其土拱模式分析[J]. 中国公路学报, 2014,27(1):30-37. [12] 周文权, 冷伍明, 阮波, 等. 考虑桩土相互作用的抗滑桩临界桩间距研究[J]. 铁道科学与工程学报, 2014,11(3):83-87. [13] 肖世国, 程富强. 再论悬臂式抗滑桩合理桩间距的计算方法[J]. 岩土力学, 2015,36(1):111-116. [14] 邱子义, 韩同春, 豆红强, 等. 桩后及桩侧土拱共同作用的抗滑桩桩间距分析[J]. 浙江大学学报(工学版), 2016,50(3):559-565. [15] 张玲, 陈金海, 赵明华. 考虑土拱效应的悬臂式抗滑桩最大桩间距确定[J]. 岩土力学, 2019,40(11):4497-4505. [16] 林斌, 李怀鑫, 范登政, 等. 悬臂式抗滑桩受力特性分析及桩间距计算[J]. 人民长江, 2021,52(4):177-181. [17] 李长冬. 桩与滑坡体相互作用机理及其优化研究[D].北京:中国地质大学,2009. [18] 李登峰, 赵晓彦, 胡卸文, 等. 考虑土拱效应的边坡桩间土钉墙受力计算[J]. 中国公路学报, 2018,31(5):1-8.
点击查看大图
计量
- 文章访问数: 24
- HTML全文浏览量: 1
- PDF下载量: 0
- 被引次数: 0