Experimental Research on Mechanical Properties of In-Situ Printed Concrete Slabs
-
摘要: 目前,3D打印混凝土建造的房屋建筑其楼板主要采用预制打印构件现场拼装的方法,但随着大型混凝土3D打印机的深入研发,原位打印房屋的实践也在加速探索中。板构件的现场原位打印需要底模才能实现,为此模拟设临时底模的现场原位打印及分别用打印混凝土叠合板与压型钢板作为永久底模的建造方法,设计了原位打印混凝土板构件受力性能试验,研究其破坏形态、裂缝分布、挠度发展和特征荷载。试验表明,用打印混凝土板为永久模板的构件与使用临时模板整体打印的混凝土板构件均呈现与普通混凝土板类似的整体破坏模式,叠加打印的混凝土层之间以及预制叠合打印的混凝土层间能够形成较好的黏结;而应用压型钢板作为永久底模的板构件则出现压型钢板与打印混凝土间的滑移。Abstract: Currently, the construction of floor slabs of 3D printed concrete buildings mainly adopts the method of on-site assembly of prefabricated printed slabs, but with the in-depth research and development of large concrete 3D printers, the practice of in-situ printing of floor slabs is also accelerating in the exploration. The in-situ printing of floor slabs requires a base mold to achieve, so by simulating the in-situ printing of temporary base mold and the construction method of using printed concrete laminated slab and profiled steel sheet as permanent base mold respectively, the in-situ printed concrete slab specimens were designed to study the damage pattern, crack distribution, deflection development and characteristic load. The tests showed that both the specimens with printed concrete slabs as permanent base mold and the specimens with temporary base mold exhibited similar overall damage patterns as those of ordinary concrete slabs, and good bonds could be formed between the superimposed printed concrete layers and between the prefabricated superimposed printed concrete layers; while the slab specimens with profiled steel sheet applied as permanent base mold showed slippage between the profiled steel sheet and the printed concrete.
-
Key words:
- 3D printed concrete /
- in-situ construction /
- slab components /
- mechanical properties
-
[1] FATERI M, GEBHARDT A. Introduction to additive manufacturing[M]. Springer International Publishing, 2020:1-22. [2] 丁烈云,徐捷,覃亚伟.建筑3D打印数字建造技术研究应用综述[J].土木工程与管理学报,2015,32(3):1-10. [3] GEERT De S, et al. Vision of 3D printing with concrete-technical, economic and environmental potentials[J]. Cement and Concrete Research, 2018, 112:25-36. [4] 孙远. 混凝土层叠打印工艺对其力学性能的影响研究[D].南京:东南大学,2020. [5] MA G, LI Z, WANG L,et al. Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing[J]. Construction and Building Materials, 2019, 202:770-783. [6] LE T T, AUSTIN S A, LIM S,et al. Hardened properties of high-performance printing concrete[J]. Cement and Concrete Research, 2012, 42(3):558-566. [7] "基建狂魔":我国建成世界首例原位3D打印双层建筑[J].课堂内外(作文独唱团),2020(1):9. [8] 武雷,杨威,孙远,等.打印混凝土与钢筋的黏结性能试验研究[J].工业建筑,2020,50(11):32-38. [9] 刘超,王有强,刘化威,等.基于打印参数影响的3D打印混凝土力学性能试验研究[J].材料导报,2023,37(1):84-90. [10] 侯泽宇,张宇,张超,等.3D打印混凝土力学性能试验方法[J].混凝土与水泥制品,2019(11):1-5. [11] 程晓宇.室温拉伸试验标准GB/T 228.1-2010应用解析[J].理化检验(物理分册),2018,54(2):122-124. 期刊类型引用(12)
1. 陈乐,刘龙龙,张进,隋志海,韩毅. 基于中、美、欧规范的钢筋混凝土受弯构件最大裂缝宽度的对比分析. 四川水泥. 2025(03): 4-7 . 百度学术
2. 陈茂辉. 玄武岩纤维布加固技术对不同火灾受损混凝土的应用研究. 粘接. 2024(01): 94-97 . 百度学术
3. 张正亚,王志博,孙明明. 轴向荷载作用下碳纤维布约束损伤混凝土能量耗散试验研究. 复合材料科学与工程. 2024(02): 81-88 . 百度学术
4. 杨宇腾. 岩土工程用玄武岩纤维复合材料耐久性研究. 粘接. 2024(03): 69-72 . 百度学术
5. 崔晨华. 基于建筑施工造价管理的碳纤维复合材料开发与应用. 合成材料老化与应用. 2022(03): 110-112 . 百度学术
6. 管品武,尚佳琦,范家俊,张普,陈启壮. CFRP片材-工程水泥基复合材料-混凝土复合界面单面剪切试验研究. 复合材料学报. 2022(06): 2810-2820 . 百度学术
7. 张艳. 岩土工程中玄武岩纤维复合加固材料的性能分析. 粘接. 2022(07): 57-60 . 百度学术
8. 徐江洪,张冬冬,邵飞,徐龙星,高一峰. FRP-铝合金平面桁架结构极限承载性能试验研究. 陆军工程大学学报. 2022(06): 33-39 . 百度学术
9. 王春雨. 超高性能纤维混凝土在公路桥梁加固修复施工项目中的应用. 交通世界. 2022(36): 142-144 . 百度学术
10. 田时雨,任凤鸣,陈光明. 复材新结构梁柱节点:研究现状及展望. 工业建筑. 2021(06): 186-197 . 本站查看
11. 莫昌金,段金辉,孙峰,张弛. 基于复合材料预紧力齿连接和螺纹连接的组合接头极限承载性能研究. 装备制造技术. 2021(10): 107-111 . 百度学术
12. 张健,李斌,张学智. 预应力FRP板加固钢筋混凝土梁的试验研究. 湖南理工学院学报(自然科学版). 2020(04): 45-49 . 百度学术
其他类型引用(2)
-

计量
- 文章访问数: 111
- HTML全文浏览量: 14
- PDF下载量: 3
- 被引次数: 14