Research on Registration Method Based on Point Cloud Data and BIM Model
-
摘要: 随着建筑行业的飞速发展,3D点云扫描技术与BIM模型的自动配准成为一大研究热点。现如今建筑工程的科技化发展已经成为必然趋势,且只有依靠现代科技才能实现更高水平的施工工作。基于此,随着BIM技术高速发展、3D激光扫描技术的三维展示性脱颖而出,能够非接触高速精确地获取目标物的三维坐标数据,经过业内软件处理,建立目标建筑物的三维数字模型。点云数据具有几何信息精度高,可真实还原建筑现场的优点,BIM具有丰富的构件几何信息。提出了一种利用BIM网格模型对3D点云进行粗配准的方法,重点以平面作为几何特征,用于将3D点云与BIM网格对齐,从而实现对建筑物施工进度的监测,为建筑行业实现智能化与精确化提供了可能。Abstract: With the rapid development of the construction industry, 3D point cloud scanning technology and automatic registration of BIM model have become a hot research topic. Nowadays, the technological development of construction engineering has become an inevitable trend, and only by relying on modern science and technology can a higher level of construction work be achieved. Based on this, with the rapid development of BIM technology and the 3D display of 3D laser scanning technology, the 3D coordinate data of the target can be obtained at a non-contact speed and accurately, and the 3D digital model of the target building can be established through the processing of software in the industry. Point cloud data has the advantages of high accuracy of geometric information and true restoration of construction site, while BIM has rich geometric construction information. This paper proposed a rough registration method of 3D point cloud using BIM grid model, focusing on the plane as geometric feature, which is used to align 3D point cloud with BIM grid, so as to realize the monitoring of building construction progress, and provide the possibility for the construction industry to achieve intelligence and precision.
-
Key words:
- BIM /
- 3D point cloud /
- coarse registration
-
[1] CHEN J, LI S, LU W. Align to locate: registering photogrammetric point clouds to BIM for robust indoor localization [J/OL]. Building and Environment, 2022,209[2022-02-01].https://doi.org/10.1016/j.buildenv.2021.108675. [2] 刘莎莎, 朱庆, 汤圣君. 室内三维点云与BIM集成的建筑施工进度监测方法[J].地理信息世界, 2019, 26(5): 107-112. [3] XUE F, LU W, CHEN K. BIM reconstruction from 3D point clouds: A semantic registration approach based on multimodal optimization and architectural design knowledge [J/OL]. Advanced Engineering Informatics, 2019,42[2019-10-01].https://doi.org/10.1016/j.aei.2019.100965. [4] BOSCHé F. Plane-based registration of construction laser scans with 3D/4D building models [J]. Advanced Engineering Informatics, 2012, 26(1): 90-102. [5] LI F X, KIM M K. Mirror-aided registration-free geometric quality inspection of planar-type prefabricated elements using terrestrial laser scanning [J/OL]. Automation in Construction, 2021,121[2020-11-20]. https://doi.org/10.1016/j.autcon.2020.103442. [6] 詹旭.点云数据预处理之关键算法研究[D].绵阳:西南科技大学,2021. [7] GRESSIN A, MALLET C, DEMANTKé J. Towards 3D lidar point cloud registration improvement using optimal neighborhood knowledge [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013,79:240-251. [8] SAVAL-CALVO M, AZORIN-LOPEZ J, FUSTER-GUILLO A. μ-MAR: multiplane 3D marker based Registration for depth-sensing cameras [J]. Expert Systems with Applications, 2015, 42(23): 9353-9365. [9] KAISER T, CLEMEN C, MAAS H G. Automatic co-registration of photogrammetric point clouds with digital building models [J/OL]. Automation in Construction, 2022,134[2021-12-21]. https://doi.org/10.1016/j.autcon.2021.104098. [10] 桂玉环, 郑纯茉, 刘杨. 激光点云与BIM结合的古桥梁数字模型重构[J].佳木斯大学学报(自然科学版), 2022, 40(1): 9-12. [11] 王思平. 点云扫描与BIM技术的结合研究[J].城市建筑, 2021, 18(10): 172-174. [12] 刘莎莎. 点云数据与BIM集成的建筑物施工进度监测技术方法 [D]. 成都:西南交通大学, 2019. [13] 亓强强, 魏世桥, 张煜. 基于三维点云的施工进度自动检测方法[J]. 动化与仪表, 2021, 36(8): 63-69.
点击查看大图
计量
- 文章访问数: 143
- HTML全文浏览量: 8
- PDF下载量: 3
- 被引次数: 0