中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊
中国建筑科学领域高质量科技期刊分级目录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应力影响下预应力筋的腐蚀性能研究综述

徐丹丹 赵羽习 曾滨 弓扶元

徐丹丹, 赵羽习, 曾滨, 弓扶元. 应力影响下预应力筋的腐蚀性能研究综述[J]. 工业建筑, 2023, 53(3): 1-11,20. doi: 10.13204/j.gyjzG22083114
引用本文: 徐丹丹, 赵羽习, 曾滨, 弓扶元. 应力影响下预应力筋的腐蚀性能研究综述[J]. 工业建筑, 2023, 53(3): 1-11,20. doi: 10.13204/j.gyjzG22083114
XU Dandan, ZHAO Yuxi, ZENG Bin, GONG Fuyuan. A Review of Corrosion Characteristics of Prestressing Tendons Under the Influence of Stress[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(3): 1-11,20. doi: 10.13204/j.gyjzG22083114
Citation: XU Dandan, ZHAO Yuxi, ZENG Bin, GONG Fuyuan. A Review of Corrosion Characteristics of Prestressing Tendons Under the Influence of Stress[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(3): 1-11,20. doi: 10.13204/j.gyjzG22083114

应力影响下预应力筋的腐蚀性能研究综述

doi: 10.13204/j.gyjzG22083114
基金项目: 

国家自然科学基金项目(52038010)

国家工业建筑诊断与改造工程技术研究中心开放基金项目(YYY2020Z046)。

详细信息
    作者简介:

    徐丹丹,女,1999年出生,博士研究生,xuddan@zju.edu.cn。

    通讯作者:

    弓扶元,男,研究员,gongfy@zju.edu.cn。

A Review of Corrosion Characteristics of Prestressing Tendons Under the Influence of Stress

  • 摘要: 对应力影响下预应力筋腐蚀性能的相关研究进行了综述,从腐蚀现象和腐蚀效应两方面总结了相关研究的成果。腐蚀现象的研究关注腐蚀起始和点蚀形成、点蚀演化和裂纹成核、裂纹扩展和金属断裂的整个发展过程。预应力筋中的应力影响钝化膜的形成和破坏,进而影响点蚀敏感性。因点蚀演化在蚀坑处形成微裂纹是应力腐蚀开裂的典型特征,分析裂纹扩展模式和断口形貌可以确定该断裂模式。腐蚀效应的研究重点关注有应力历史的腐蚀预应力筋的力学性能退化,研究表明强度和延性均有不同程度的降低,关于应力水平/应力幅对性能退化的影响规律仍需进一步研究。
  • [1] 李富民, 邓天慈, 王江浩, 等. 预应力混凝土结构耐久性研究综述[J]. 建筑科学与工程学报, 2015, 32(2): 1-20.
    [2] MENGA A, KANSTAD T, CANTERO D, et al. Corrosion-induced damages and failures of posttensioned bridges: A literature review[J]. Structural Concrete, 2022, 24: 84-99.
    [3] WOODWARD R J. Collapse of a segmental post-tensioned concrete bridge[J/OL]. Transportation Research Record, 1989(1211)[2022-08-31].https://doi.org/10.1680/iicep.1988.179.
    [4] WOODWARD R, WILLIAMS F. Collapse of Ynys-y-Gwas Bridge, Glamorgan[J]. Proceedings of the Institution of Civil Engineers, 1988, 84(4): 635-669.
    [5] SCHUPACK M. A survey of the durability performance of post-tensioning tendons[J]. ACI Journal, 1978, 75(10): 501-510.
    [6] SCHUPACK M, SUAREZ M G. Some recent corrosion embrittlement failures of prestressing systems in the United States[J]. PCI Journal, 1982, 27(2): 38-55.
    [7] 谢玉英. 海印大桥换索工程施工质量的监控[J]. 中南公路工程, 1997(1): 22-26.
    [8] 赵虎, 蒲黔辉. 吊杆拱桥考虑结构缺陷及交通量增加的受力特性[J]. 重庆大学学报, 2014, 37(6): 25-32.
    [9] INVERNIZZI S, MONTAGNOLI F, CARPINTERI A. Very high cycle corrosion fatigue study of the collapsed Polcevera Bridge, Italy[J]. Journal of Bridge Engineering, 2022, 27(1)[2022-08-31]. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001807.
    [10] LI F. Corrosion propagation of prestressing steel strands in concrete subject to chloride attack[J]. Construction and Building Materials, 2011,25(10):3878-3885.
    [11] 李富民. 氯盐环境钢绞线预应力混凝土结构的腐蚀效应[D]. 北京:中国矿业大学, 2008.
    [12] PROVERBIO E, BONACCORSI L M. Failure of prestressing steel induced by crevice corrosion in prestressed concrete structures[C]//Proeedings of 9th international conference on durability of materials and components (9DBCM). Brisbane:2002.
    [13] 戴理朝, 王磊, 张建仁, 等. 钢绞线锈蚀产物填充及裂缝宽度预测[J]. 浙江大学学报(工学版), 2018, 52(1): 97-105.
    [14] RENGARAJU S, GODARA A, ALAPATI P, et al. Macrocell corrosion mechanisms of prestressing strands in various concretes[J]. Magazine of Concrete Research, 2020, 72(4): 194-206.
    [15] CHEN Y, QIN W, WANG Q, et al. Influence of corrosion pit on the tensile mechanical properties of a multi-layered wire rope strand[J/OL]. Construction and Building Materials, 2021, 302[2022-05-30].https://doi.org/10.1016/j.conbuildmat.2021.124387.
    [16] CHEN Y, WANG Q, QIN W, et al. Study on the mechanical performance of a three-layered wire rope strand with a surface pit in varied corrosion direction into the wire[J/OL]. Engineering Failure Analysis, 2022, 136[2022-05-30].https://doi.org/10.1016/j.engfailanal.2022.106181.
    [17] FANG K, LI S, CHEN Z, et al. Geometric characteristics of corrosion pits on high-strength steel wires in bridge cables under applied stress[J]. Structure and Infrastructure Engineering, 2021, 17(1): 34-48.
    [18] CHEN A, YANG Y, MA R, et al. Experimental study of corrosion effects on high-strength steel wires considering strain influence[J/OL]. Construction and Building Materials, 2020, 240[2022-05-30].https://doi.org/10.1016/j.conbuildmat.2019.117910.
    [19] ACI. Corrosion of prestressing steels: ACI 222.2R-01[S]. Farmington Hills, MI:American Concrete Institute, 2001.
    [20] Fib Bulletin 26. Influence of material and processing on stress corrosion cracking of prestressing steel[R]. Lausanne, Switzerland: Féd-ération internationale du béton, 2003.
    [21] 王正, 杜习伟. 45MnSiV预应力钢筋的应力腐蚀[J]. 中国腐蚀与防护学报, 1991(1): 35-45.
    [22] 王崧全. 矿用钢丝在腐蚀环境中应力与腐蚀的交互作用研究[D]. 北京:中国矿业大学, 2014.
    [23] SCHROEDER R M, MVLLER I L. Stress corrosion cracking and hydrogen embrittlement susceptibility of an eutectoid steel employed in prestressed concrete[J]. Corrosion Science, 2003, 45(9): 1969-1983.
    [24] WU S. Effects of environmental factors on stress corrosion cracking of cold-drawn high-carbon steel wires[J/OL]. Corrosion Science, 2018: 10[2022-05-30].https://doi.org/10.1016/j.corsci.2017.12.014.
    [25] WU S, LI J, GUO J, et al. Stress corrosion cracking fracture mechanism of cold-drawn high-carbon cable bolts[J/OL]. Materials Science and Engineering: A, 2020, 769[2022-05-30].https://doi.org/10.1016/j.msea.2019.138479.
    [26] LYU S, LI K, CHEN J, et al. Corrosion of high-strength steel wires under tensile stress[J/OL]. Materials, 2020, 13(21)[2022-05-30].https://doi.org/10.3390/ma13214790.
    [27] CHERRY B W, PRICE S M. Pitting, crevice and stress corrosion cracking studies of cold drawn eutectoid steels[J]. Corrosion Science, 1980, 20(11/12): 1163-1183.
    [28] PARKINS R N. Environment sensitive fracture and its prevention[J]. British Corrosion Journal, 1979, 14(1): 5-14.
    [29] ALYOUSIF O M, NISHIMURA R. Stress corrosion cracking and hydrogen embrittlement of sensitized austenitic stainless steels in boiling saturated magnesium chloride solutions[J]. Corrosion Science, 2008, 50(8): 2353-2359.
    [30] NISHIMURA R, MAEDA Y. SCC evaluation of type 304 and 316 austenitic stainless steels in acidic chloride solutions using the slow strain rate technique[J]. Corrosion Science, 2004,46(3):769-785.
    [31] TORIBIO J, OVEJERO E. Failure analysis of cold drawn prestressing steel wires subjected to stress corrosion cracking[J]. Engineering Failure Analysis, 2005, 12(5): 654-661.
    [32] ELICES M, CABALLERO L, VALIENTE A, et al. Hydrogen embrittlement of steels for prestressing concrete: the FIP and DIBt tests[J]. Corrosion, 2008, 64(2): 164-174.
    [33] BRUEMMER S M. Grain boundary chemistry and intergranular failure of austenitic stainless steels[J]. Materials Science Forum, 1991, 46: 309-334.
    [34] HREDIL M I, TORIBIO J. Susceptibility of prestressing steel wires to hydrogen-assisted cracking in alkaline media simulating concrete pore solutions[J]. Materials Science, 2017, 52:669-674.
    [35] TORIBIO J, OVEJERO E. Failure analysis of cold drawn prestressing steel wires subjected to stress corrosion cracking[J]. Engineering Failure Analysis, 2005, 12(5): 654-661.
    [36] TORIBIO J, LANCHA A M. Effect of cold drawing on susceptibility to hydrogen embrittlement of prestressing steel[J]. Materials and Structures,1993,26:30-37.
    [37] LI H, LAN C M, JU Y, et al. Experimental and numerical study of the fatigue properties of corroded parallel wire cables[J]. Journal of Bridge Engineering, 2012, 17(2): 211-220.
    [38] JIANG C, WU C, JIANG X. Experimental study on fatigue performance of corroded high-strength steel wires used in bridges[J]. Construction and Building Materials, 2018, 187: 681-690.
    [39] ZHENG Y, WANG Y. Damage evolution simulation and life prediction of high-strength steel wire under the coupling of corrosion and fatigue[J/OL]. Corrosion Science, 2020, 164[2022-05-30].https://doi.org/10.1016/j.corsci.2019.108368.
    [40] XUE S, SHEN R, CHEN W, et al. Corrosion fatigue failure analysis and service life prediction of high strength steel wire[J/OL]. Engineering Failure Analysis, 2020, 110[2022-05-30].https://doi.org/10.1016/j.engfailanal.2020.104440.
    [41] CUI C, CHEN A, MA R. An improved continuum damage mechanics model for evaluating corrosion-fatigue life of high-strength steel wires in the real service environment[J/OL]. International Journal of Fatigue, 2020, 135[2022-05-30].https://doi.org/10.1016/j.ijfatigue.2020.105540.
    [42] 喻宣瑞, 姚国文, 范伟庆. 交变荷载和氯盐环境作用下钢绞线的腐蚀疲劳性能研究[J]. 材料导报, 2021, 35(20): 20087-20091.
    [43] JIE Z, CHEN C, BERTO F, et al. Effect of stress ratios on corrosion fatigue life of high-strength steel wires[J]. Fatigue & Fracture of Engineering Materials & Structures, 2022, 45(2): 593-606.
    [44] BLAND L G,LOCKE J S. Chemical and electrochemical conditions within stress corrosion and corrosion fatigue cracks[J/OL]. npj Materials Degradation, 2017[2022-05-30]. https://doi.org/10.1038/S41529-0017-0015-0.
    [45] OGUNSANYA I G, HANSSON C M. The semiconductor properties of passive films and corrosion behavior of stainless steel reinforcing bars in simulated concrete pore solution[J/OL]. Materialia, 2019, 6[2022-05-30].https://doi.org/10.1016/j.mtla.2019.100321.
    [46] WU W, LIU Z, HU S, et al. Effect of pH and hydrogen on the stress corrosion cracking behavior of duplex stainless steel in marine atmosphere environment[J]. Ocean Engineering, 2017, 146: 311-323.
    [47] 赵程烨. 典型工业环境下预应力混凝土性能劣化与寿命预测[D]. 南京:东南大学, 2021.
    [48] JOSELINE D, PILLAI R G, NEELAKANTAN L. Initiation of stress corrosion cracking in cold-drawn prestressing steel in hardened cement mortar exposed to chlorides[J]. Corrosion, 2021, 77(8): 906-922.
    [49] LENNON S J, ROBINSON F P A, GARRETT G G. The influence of applied stress and surface finish on the pitting susceptibility of low alloy turbine disk steels in wet steam[J]. Corrosion, 1984, 40(8): 5.
    [50] DIAZ B, FREIRE L, NÓVOA X R, et al. Electrochemical behaviour of high strength steel wires in the presence of chlorides[J]. Electrochimica Acta, 2009, 54(22): 5190-5198.
    [51] DESESTRET R, OLTRA A. The influence of plastic straining on localized and general corrosion of stainless steels[J].Corrosion Science, 1980, 20(6): 799-820.
    [52] KEDDAM J, VIEIRA DA SILVA. The influence of straining on the anodic behaviour of iron in an acidic medium[J]. Corrosion Science, 1980, 20(2):167-175.
    [53] 林兵. 应力对预应力钢丝断裂性能和腐蚀的影响研究[D]. 上海:上海交通大学, 2007.
    [54] LU BT, ZENG Y, PANG X, et al. Effects of hydrogen and tensile stress on passivity of carbon steel[J]. Corrosion Engineering, Science and Technology, 2015, 50(3): 186-190.
    [55] LU B T, LUO J L, NORTON P R, et al. Effects of dissolved hydrogen and elastic and plastic deformation on active dissolution of pipeline steel in anaerobic groundwater of near-neutral pH[J]. Acta Materialia, 2009, 57(1): 41-49.
    [56] HORNER D A, CONNOLLY B J, ZHOU S, et al. Novel images of the evolution of stress corrosion cracks from corrosion pits[J]. Corrosion Science, 2011, 53(11): 3466-3485.
    [57] TURNBULL A. Corrosion pitting and environmentally assisted small crack growth[J/OL]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470(2169) (2014-09-08)[2022-05-30].https://doi.org/10.1098/rspa.2014.0254.
    [58] KONDO Y. Prediction of fatigue crack initiation life based on pit growth[J]. Corrosion, 1989, 45(1): 7-11.
    [59] DAS C R, RAVISHANKAR C, ALBERT S K, et al. Failure analysis of cold worked AISI 301 SS diaphragm of gas pump[J]. Engineering Failure Analysis, 2018, 92: 456-465.
    [60] HASHIM M, FARHAD F, SMYTH-BOYLE D, et al. Behavior of 316L stainless steel containing corrosion pits under cyclic loading[J]. Materials and Corrosion, 2019, 70(11): 2009-2019.
    [61] VU N A, CASTEL A, FRANÇOIS R. Effect of stress corrosion cracking on stress-strain response of steel wires used in prestressed concrete beams[J]. Corrosion Science, 2009, 51(6): 1453-1459.
    [62] MOD. Steel for the reinforcement and prestressing of concrete: test methods: part 3 prestressing steel: ISO 15630-3[S]. London: Ministry of Defence (MOD), 2010.
    [63] TORIBIO J, GONZÁLEZ B, MATOS J C. Fatigue crack propagation in cold drawn steel[J]. Materials Science and Engineering: A, 2007, 468-470: 267-272.
    [64] TORIBIO J, MATOS J C, GONZÁLEZ B. Micro- and macro-approach to the fatigue crack growth in progressively drawn pearlitic steels at different R-ratios[J]. International Journal of Fatigue, 2009, 31(11): 2014-2021.
    [65] 黄小光. 腐蚀疲劳点蚀演化与裂纹扩展机理研究[D]. 上海:上海交通大学, 2013.
    [66] MA Y, LIU X, GUO Z, et al. Predicting corrosion fatigue crack propagation behavior of HRB400 steel bars in simulated corrosive environments[J/OL]. Journal of Materials in Civil Engineering, 2021, 33(6)[2022-05-30].https://doi.org/10.1061/(ASCE)MT.1943-5533.0003.
    [67] GUO Y, SHAO Y, GAO X, et al. Corrosion fatigue crack growth of serviced API 5L X56 submarine pipeline[J/OL]. Ocean Engineering, 2022, 256[2022-05-30].https://doi.org/10.1016/j.oceaneng.2022.111502.
    [68] TORIBIO J, AYASO F J. Anisotropic fracture behaviour of cold drawn steel: a materials science approach[J]. Materials Science and Engineering: A, 2003, 343(1/2): 265-272.
    [69] TORIBIO J, OVEJERO E. Microstructure-based modeling of hydrogen assisted cracking in pearlitic steels[J]. Materials Science and Engineering: A, 2001, 319/321: 540-543.
    [70] TORIBIO J, GONZÁLEZ B, MATOS J C. Fatigue and fracture paths in cold drawn pearlitic steel[J]. Engineering Fracture Mechanics, 2010, 77(11): 2024-2032.
    [71] PERRIN M, GAILLET L, TESSIER C, et al. Hydrogen embrittlement of prestressing cables[J]. Corrosion Science, 2010, 52(6): 1915-1926.
    [72] TORIBIO J. Delamination fracture of prestressing steel: an engineering approach[J]. Engineering Fracture Mechanics, 2008, 75(9): 2683-2694.
    [73] TORIBIO J, VASSEUR E. Hydrogen-assisted micro-damage evolution in pearlitic steel[J]. Journal of Materials Science Letters, 1997, 16(16): 1345-1348.
    [74] 曾严红, 顾祥林, 张伟平, 等. 锈蚀预应力筋力学性能研究[J]. 建筑材料学报, 2010, 13(2): 169-174

    ,209.
    [75] LU Z H, LI F, ZHAO Y G. An investigation of degradation of mechanical behaviour of prestressing strands subjected to chloride attacking[C]//Proceedings of the 5th International Conference on the Durability of Concrete Structures. West Lofayette: 2016.
    [76] 张伟平, 王晓刚, 顾祥林, 等. 加速锈蚀与自然锈蚀钢筋混凝土梁受力性能比较分析[J]. 东南大学学报(自然科学版), 2006(增刊2): 139-144.
    [77] 袁迎曙, 章鑫森, 姬永生. 人工气候与恒电流通电法加速锈蚀钢筋混凝土梁的结构性能比较研究[J]. 土木工程学报, 2006(3): 42-46.
    [78] BOLZONI F, GASTALDI M. Experimental evaluation of rebars corrosion in concrete[C]//Capacity Assessment of Corroded Reinforced Concrete Structures. FIB Federation International du beton-International Federation for Structural Concrete. 2020: 31-38.
    [79] LI H, LAN C M, JU Y, et al. Experimental and numerical study of the fatigue properties of corroded parallel wire cables[J]. Journal of Bridge Engineering, 2012, 17(2): 211-220.
    [80] XU F, CHEN Y, ZHENG X, et al. Experimental study on corrosion and mechanical behavior of main cable wires considering the effect of strain[J/OL]. Materials, 2019, 12(5)[2022-05-30].https://doi.org/10.3390/ma12050753.
    [81] WANG L, LI T, DAI L, et al. Corrosion morphology and mechanical behavior of corroded prestressing strands[J]. Journal of Advanced Concrete Technology, 2020, 18(10): 545-557.
    [82] ZHANG X, WANG L, ZHANG J, et al. Corrosion-induced flexural behavior degradation of locally ungrouted post-tensioned concrete beams[J]. Construction and Building Materials, 2017, 134: 7-17.
    [83] JEON C H, LEE J B, LON S, et al. Equivalent material model of corroded prestressing steel strand[J]. Journal of Materials Research and Technology, 2019, 8(2): 2450-2460.
    [84] JEON C H, NGUYEN C D, SHIM C S. Assessment of mechanical properties of corroded prestressing strands[J/OL]. Applied Sciences, 2020, 10(12)[2022-05-30].https://doi.org/10.3390/app10124055.
    [85] FRANCESCHINI L, VECCHI F, TONDOLO F, et al. Mechanical behaviour of corroded strands under chloride attack: a new constitutive law[J/OL]. Construction and Building Materials, 2022, 316[2022-05-30].https://doi.org/10.1016/j.conbuildmat.2021.125872.
    [86] WU T, CHEN W, LI H, et al. Experiment and probabilistic prediction on mechanical properties of corroded prestressed strands under different strain levels[J/OL]. Journal of Materials in Civil Engineering, 2022, 34(8)(2022-05-20).https://doi.org/10.1061/(ASCE)MT.1943-5533.0004.298.
    [87] BARTON S C, VERMAAS G W, DUBY P F, et al. Accelerated corrosion and embrittlement of high-strength bridge wire[J]. Journal of Materials in Civil Engineering, 2000, 12(1): 33-38.
    [88] ZHANG W P, LI C K, GU X L, et al. Variability in cross-sectional areas and tensile properties of corroded prestressing wires[J/OL]. Construction and Building Materials, 2019, 228[2022-05-30].https://doi.org/10.1061/(ASCE)MT.1943-5533.0004298.
    [89] 张欢喜. 氯盐环境PC结构中钢绞线的腐蚀疲劳损伤演化规律[D]. 徐州:中国矿业大学, 2014.
  • 加载中
计量
  • 文章访问数:  171
  • HTML全文浏览量:  13
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-31

目录

    /

    返回文章
    返回