Dynamic Compression Mechanical Characteristics and Energy Dissipation Law of Basalt Fiber Reinforced Concrete Under Different Curing Conditions
-
摘要: 为探究冲击荷载作用下养护条件对玄武岩纤维混凝土力学性能的影响,采用分离式霍普金森压杆试验装置(SHPB)对不同养护龄期(1 d、3 d、7 d、14 d、28 d)及养护相对湿度(35%、55%、75%、95%)的玄武岩纤维混凝土开展动态单轴压缩试验,分析养护龄期及养护相对湿度对试件的平均应变率、峰值应力、能量耗散及分形维数的影响规律。结果表明:相同冲击荷载作用下试件平均应变率会随养护龄期的增长、相对湿度的增大而降低,峰值应力随之增大,养护龄期与平均应变率间呈指数负相关,与峰值应力间呈指数正相关;冲击荷载作用下试件能量时程曲线可分为三个阶段,其透射能、耗散能及破碎耗能密度均随养护龄期的增长、相对湿度的增大而增大,反射能随之降低,养护龄期的增长、相对湿度的增大会使试件水化产物增多,增强试件整体性;养护相对湿度为95%时,相较于养护龄期为1 d试件,养护龄期为3 d、7 d、14 d、28 d试件分形维数降幅分别为8.61%、13.91%、23.58%、26.68%,养护龄期减少、相对湿度降低会使试件破碎程度增加,分形维数随之增大。Abstract: In order to explore the effect of curing conditions on the mechanical properties of basalt fiber reinforced concrete under impact load, the dynamic uniaxial compression tests of basalt fiber reinforced concrete with different curing ages (1,3,7,14,28 d) and curing relative humidity (35%,55%,75%,95%) were carried out with split Hopkinson compression bar test device (SHPB). The effects of curing age and relative humidity on the average strain rate, peak stress, energy dissipation and fractal dimension of the specimens were analyzed. The results showed that under the same impact load, the average strain rate of specimens would decrease with the increase of curing age and relative humidity. The curing age had an exponential negative correlation with the average strain rate and an exponential positive correlation with the peak stress. The energy time history curve of the specimen under impact load could be divided into three stages. The transmission energy, dissipation energy and crushing energy density increased with the increase of curing age and relative humidity, and the reflection energy decreased with it. The increase of curing age and relative humidity would increase the hydration products of the specimen andenhance the integrity of the specimen. When the curing relative humidity was 95%, compared with the specimens with the curing age of 1 d, the decrease of the fractal dimension of the specimens with the curing age of 3 d, 7 d, 14 d and 28 d was 8.61%, 13.91%, 23.58% and 26.68% respectively. The reduction of curing age and relative humidity would increase the fracture degree of the specimen, and the fractal dimension would increase.
-
Key words:
- basalt fiber /
- curing age /
- relative humidity /
- peak stress /
- crushing energy consumption density /
- fractal dimension
-
[1] 赵庆新,董进秋,潘慧敏,等. 玄武岩纤维增韧混凝土冲击性能[J]. 复合材料学报,2010,27(6):120-125. [2] 尹俊红,周继阳,赫中营. 碳纤维混凝土单轴循环受压应力应变曲线试验研究[J]. 建筑科学,2021,37(5):113-121. [3] 徐文协,张拥军. 碳纤维对水泥砂浆的力学性能影响和破坏形态分析[J]. 低温建筑技术,2020,42(9):26-29. [4] 李福海,高浩,唐慧琪,等. 短切玄武岩纤维混凝土基本性能试验研究[J]. 铁道科学与工程学报,2022,19(2):419-427. [5] 王启,赵俭斌,董浩,等. 玄武岩纤维混凝土弯曲破坏特征与韧性分析[J]. 混凝土与水泥制品,2021(10):48-51. [6] 贺晶晶,师俊平,张勇,等. 玄武岩纤维改善混凝土拉伸性能分析[J]. 复合材料科学与工程,2021(8):39-43. [7] 侯敏,陶燕,陶忠,等. 关于玄武岩纤维混凝土的增强机理研究[J]. 混凝土,2020(2):67-71,75. [8] 李为民,许金余. 玄武岩纤维混凝土的冲击力学行为及本构模型[J]. 工程力学,2009,26(1):86-91. [9] 马超,郑世龙,阮波,等. 不同养护温度下水泥改良风积沙核磁共振试验研究[J]. 铁道科学与工程学报,2022,19(5):1270-1278. [10] 杨帆,张友锋,余姚. 低温养护下矿物掺合料湿喷混凝土力学性能及配比优化研究[J]. 硅酸盐通报,2022,41(5):1589-1598. [11] 艾洪祥,刘洋,李绍纯,等. 不同养护湿度下内养护材料对混凝土性能的影响研究[J]. 新型建筑材料,2022,49(1):53-57. [12] 王雪芳,肖祥栋,方金杰,等. 不同养护龄期下再生粗骨料混凝土拉伸本构关系[J]. 建筑材料学报,2018,21(6):977-983. [13] 刘鹏,余志武,陈令坤. 养护龄期对水泥混凝土性能和微观结构的影响[J]. 建筑材料学报,2012,15(5):717-723. [14] 贾瑜. 养护龄期对等粒径多孔水泥混凝土内部结构的影响[J]. 公路工程,2016,41(5):268-272. [15] 赵陆岳. 养护龄期对粉煤灰混凝土高温性能的影响分析[J]. 粉煤灰综合利用,2019(1):50-52,56. [16] 刘鹏,余志武,陈令坤. 养护龄期对水泥混凝土性能和微观结构的影响[J]. 建筑材料学报,2012,15(5):717-723. [17] 马军涛,水中和,陈伟,等. 养护湿度对补偿收缩混凝土碳化速率的影响[J]. 混凝土,2011(1):24-27,33. [18] 汪学正,梅德鑫,高文元,等. 养护湿度对发泡混凝土性能的影响[J]. 大连工业大学学报,2020,39(1):75-78. [19] 杨荣周,徐颖,陈佩圆. 养护湿度对橡胶水泥砂浆动态压缩破坏特征及能量耗散的影响[J]. 材料导报,2020,34(14):14070-14078. [20] 延永东,刘荣桂,陆春华,等. 养护湿度对混凝土内氯离子传输的影响[J]. 哈尔滨工业大学学报,2016,48(12):148-152. [21] 汤华明,倪修全,胡时. 静动态荷载下改性橡胶对混凝土韧性影响研究[J]. 安徽理工大学学报(自然科学版),2020,40(5):70-74. [22] 周浩,贾彬,黄辉. 玄武岩纤维混凝土受拉性能试验研究与分析[J]. 建筑结构,2020,50(24):104-109. [23] 李德超,赵晨曦. 玄武岩纤维混凝土基本力学性能研究[J]. 公路,2020,65(6):237-241. [24] 吴伟,冯虎. 碳纤维混凝土动态力学特性试验研究[J]. 复合材料科学与工程,2021(10):13-18. [25] 刘露,何康. 冻融作用下短切玄武岩纤维混凝土损伤演化及动态力学性能研究[J]. 复合材料科学与工程,2022(10):13-19. [26] 薛维培,刘晓媛,姚直书,等. 不同损伤源对玄武岩纤维增强混凝土孔隙结构变化特征的影响[J]. 复合材料学报,2020,37(9):2285-2293. [27] 王梦想,汪海波,宗琦. 煤矿泥岩冲击动态力学特性与破裂破碎特征分析[J]. 振动与冲击,2019,38(4):137-143. [28] 宋力,胡时胜. SHPB数据处理中的二波法与三波法[J]. 爆炸与冲击,2005(4):368-373. [29] 田威,余宸,王肖辉,等. 3D打印裂隙岩体动态力学性能及能量耗散规律初探[J]. 岩石力学与工程学报,2022,41(3):446-456. [30] 李成杰,徐颖,张宇婷,等. 冲击荷载下裂隙类煤岩组合体能量演化与分形特征研究[J]. 岩石力学与工程学报,2019,38(11):2231-2241. [31] 李夕兵. 岩石动力学基础与应用[M]. 北京:科学出版社,2014.
点击查看大图
计量
- 文章访问数: 85
- HTML全文浏览量: 17
- PDF下载量: 2
- 被引次数: 0