Spatial Grid Model with Diagonal Beam Elements Based on the Optimization of Spatial Mechanical Behaviors
-
摘要: 提出一种新型的带斜梁空间刚架模型,可用于混凝土箱梁结构在线弹性阶段的空间受力分析。以带斜梁空间刚架模型和真实平板在面内轴压、面内纯剪、面外纯弯这三种基本荷载作用下变形的相对误差绝对值作为目标函数,以该模型中纵横梁和斜梁的截面特性作为可变参数,以目标函数达到最小值作为优化目标,通过求解该最优化问题,建立空间性能最优化的带斜梁空间刚架模型。采用集中荷载下的悬臂梁和均布荷载下的简支箱梁作为示例,对提出的模型进行了验证,结果表明:带斜梁空间刚架模型不受平截面假定的限制,可较准确地模拟空间结构的弯曲刚度和面内剪切刚度,其变形计算结果和计入剪切变形的材料力学理论解、实体模型结果基本吻合。Abstract: A novel spatial grid model with diagonal beam elements is proposed to analyze the spatial mechanical behaviors of concrete box-section girders at the elastic linear state. The establishment of the model is based on an optimization problem: the objective functions are the absolute relative differences between the deformations from the proposed model and the actual plate under three basic types of loads including in-plane axial compression, in-plane shear, and out-of-plane bending; the variable parameters of the functions are the properties of vertical and horizontal beam and diagonal beam elements in the proposed model; the objective for the optimization is to minimize the objective functions. By solving the optimization problem, the spatial grid model with diagonal beam elements based on the optimization of spatial mechanical behaviors is established. The validity of the proposed model is illustrated with a cantilever beam under a concentrated load and a simply supported box-section girder with uniform loads as case examples. The results show that the spatial grid model with diagonal beam elements is not limited by the plane section hypothesis and is capable of accurately predicting the bending stiffness and in-plane shear stiffness. The results also reveal that the proposed model can yield deformation results consistent with the solution based on the mechanics of materials considering shear deformations and with the results from solid element models.
-
Key words:
- finite element analysis /
- box-section girder /
- plate element /
- optimization /
- parametric analysis
-
[1] 范立础. 桥梁工程(上册)[M]. 北京:人民交通出版社, 2007. [2] HAMBLY E C. Bridge deck behaviour, second edition[M]. London: Taylor & Francis Group, 1991. [3] 宋泰宇. 混凝土曲线箱梁桥极限状态分析理论及方法[D]. 上海:同济大学, 2019. [4] 陈逵. 有限平面桁架单元法的研究及应用[D]. 长沙:湖南大学, 2005. [5] 孙利民,秦东,范立础. 扩展散体单元法在钢筋混凝土桥梁倒塌分析中的应用[J]. 土木工程学报, 2002, 35(6): 53-58. [6] 吴方伯,陈坚强,尚守平. 等效铰结桁架单元[J]. 工程力学, 2005, 22(2):84-88. [7] 李春涛. 多重随机等效平面桁架模型理论研究[D]. 天津:天津大学, 2008. [8] 吴方伯,熊江陵,李钧,等. 基于空间等效桁架单元方法的钢筋混凝土结构非线性分析[J]. 建筑科学与工程学报, 2015, 32(3): 1-6. [9] 吴方伯,韩松,尚守平. 钢筋混凝土平面等效桁架模型[J]. 四川建筑, 2007(6): 158-160,163. [10] 吴方伯,丁先立,周绪红,等. 采用等效平面桁架单元对钢筋混凝土结构进行非线性分析[J]. 建筑结构学报, 2005(5): 112-117. [11] 徐栋,赵瑜,刘超. 混凝土桥梁结构实用精细化分析与配筋设计[M]. 北京:人民交通出版社, 2013. [12] 徐栋,徐方圆,赵瑜,等. 箱梁结构完整验算应力和空间网格模型[J]. 土木工程学报, 2014, 47(5): 46-55. [13] 马哗,尼颖升,徐栋,等. 基于空间网格模型分析的体外预应力加固[J]. 吉林大学学报(工学版), 2018, 48(1): 137-147. [14] 徐栋,张宇,邓锦平. 基于平面框架模型的肋式转向结构简化计算方法[J]. 同济大学学报(自然科学版), 2016, 44(10): 1497-1503. [15] 姜启源,谢金星,叶俊. 数学模型(第三版)[M]. 北京:高等教育出版社, 2003. [16] 宋子康,蔡文安. 材料力学[M]. 上海:同济大学出版社, 2005. [17] 程昌钧. 弹性力学[M]. 兰州:兰州大学出版社, 1996. [18] J. T. 奥登,E. A. 里帕格. 弹性结构力学[M]. 成文山,等,译. 北京:中国建筑工业出版社, 1986. [19] 朱伯芳. 有限单元法原理与应用[M]. 3版. 北京:中国水利水电出版社, 2009. [20] 王勖成. 有限单元法[M]. 北京:清华大学出版社, 2003.
点击查看大图
计量
- 文章访问数: 74
- HTML全文浏览量: 16
- PDF下载量: 4
- 被引次数: 0