Numerical Analysis of Stress and Deformation of Tunnel Supporting Structures Passing Through Existing Anti-Slide Piles
-
摘要: 隧道在复杂工况下支护结构受力及变形形式通常较为复杂,尤其在滑坡地段,支护结构处于偏压状态。以攀枝花阳光隧道洞口段为工程依托,探讨在浅埋偏压隧道剪断既有抗滑桩工况下,隧道支护结构的受力及变形特征。利用MIDAS GTS NX数值模拟软件建立三维模型,分析支护结构内力及应力分布规律,预测掘进过程中支护结构的薄弱环节。根据模拟结果可知:管棚支护产生整体位移,最大变形值为35.35 mm;初期支护产生挤压变形,最大变形值为34.36 mm。支护结构左拱腰处受应力集中影响内力较大,临时支护拆除对拱顶及仰拱处应力影响较大。监测数据表明:围岩压力分布不均,拱顶处接触压力最大,支护结构右侧压力大于左侧,最大压力值为268.60 kPa。Abstract: The force and deformation forms of the supporting structure of tunnels are usually complicated in complex conditions. Especially in the landslide area, the supporting structure is in a eccentrically compressive state. Based on the entrance section of Sunshine Tunnel in Panzhihua, the force and deformation characteristics of the supporting structure of tunnels in the condition of existing anti-slide piles cut off by shallowly burized tunnels were studied. A three-dimensional model was constructed by the numerical simulation software MIDAS GTS NX to analyze the internal forces and stress in the supporting structure and predict the weakness of the supporting structure in the tunnelling process. According to the simulation results, the shed-pipe support produced overall displacement, and the maximum deformation was 35.35 mm. The initial support produced extrusion deformation, and the maximum deformation was 34.36 mm. The internal force in the left arch waist of the supporting structure was larger due to stress concentration, while the removal of temporary supports had a greater impact on the stress at the vault and invert. The monitored data showed that the pressure in surrounding rock was uneven, and the contact pressure at the vault was largest. The pressure on the right side of the supporting structure was greater than that on the left side, and the maximum pressure was 268.60 kPa.
-
Key words:
- tunnel engineering /
- numerical simulation /
- anti-slide pile /
- supporting structure
-
[1] 李雪,张玉申,王洋洋,等.砂卵石地层重叠盾构隧道掘进相互影响及控制措施研究[J].工业建筑, 2022, 52(3):10-16. [2] 王怀正,宋战平,张学文,等.富水弱胶结地层大断面隧道施工方案优化与工程应用研究[J].现代隧道技术, 2022, 59(2):1-9. [3] LEI M F,LIU J Y,LIN Y X,et al. Deformation characteristics and influence factors of a shallow tunnel excavated in soft clay with high plasticity[J/OL]. Advances in Civil Engineering,2019[2022-08-16].https://doi.org/10.1155/2019/7483628. [4] 范志远.大断面土质隧道围岩压力及支护结构时空规律研究[J].铁道建筑技术, 2021(10):40-44. [5] 张艺腾,孙星亮,杨波,等.局部膨胀对隧道支护安全性的影响研究[J].隧道建设(中英文), 2021, 41(增刊2):306-312. [6] 张航,彭雪峰,周扬,等.松散岩堆体地层下城市隧道洞口段施工方案变更合理性研究[J].隧道建设(中英文), 2021, 41(增刊1):265-275. [7] 卢光兆,周博,徐锋,等.浅埋偏压隧道进洞施工围岩稳定分析[J].山东大学学报(工学版), 2021, 51(4):61-70. [8] 田鹏.高地应力软岩隧道围岩压力及二衬受力特性研究[J].铁道标准设计, 2016, 60(8):108-112. [9] 杨军平,王沾义,樊永华,等.干湿交替条件下膨胀土隧道衬砌内力试验研究[J].铁道科学与工程学报, 2016, 13(11):2220-2228. [10] 冯文文,李守巨,刘迎曦.隧道衬砌结构安全性的有限元数值模拟分析[J].科学技术与工程, 2008(3):703-708. [11] 张德华,雷可,谭忠盛,等.软岩大变形隧道双层初期支护承载性能对比试验研究[J].土木工程学报, 2017, 50(增刊2):86-92. [12] 赵勇,李术才,赵岩,等.超大断面隧道开挖围岩荷载释放过程的模型试验研究[J].岩石力学与工程学报, 2012, 31(增刊2):3821-3830. [13] 丁祖德,付江,刘新峰,等.考虑空间效应的岩堆体隧道管棚力学模型研究[J].铁道学报, 2018, 40(7):126-132.
点击查看大图
计量
- 文章访问数: 97
- HTML全文浏览量: 16
- PDF下载量: 3
- 被引次数: 0