Research on Mechanical Properties of Steel-Concrete Composite Panels Under Impact Loading
-
摘要: 为深入研究和分析钢板混凝土组合板的抗撞性能,采用ABAQUS建立了单层钢板混凝土组合(HSC)板与双层钢板混凝土组合(SCS)板在撞击荷载作用下的数值模型,并通过已有SCS板落锤撞击试验结果验证了有限元建模方法的准确性。基于此,首先分析了钢板–混凝土组合板的撞击全过程;其次,从动力响应、破坏模式与吸能系数三方面对比了HSC和SCS板的抗撞性能;最后,重点探讨了钢板含钢率与撞击高度对构件动力响应的影响,并对撞击力时程进行了简化。结果表明:所建立的数值模型可以很好地预测钢板混凝土组合板的撞击力与变形;该类构件的撞击全过程可分为四个阶段;与HSC板相比,SCS板的抗撞性能更好;建议的撞击力时程简化模型可有效用于此类构件的抗撞设计。Abstract: In order to investigate and analyze the impact resistance of steel-concrete composite panels, ABAQUS software was used to establish the finite element (FE) models of single-layer steel-concrete composite (HSC) panels and double-skin steel-concrete composite (SCS) panels. The reliability of the finite element modeling was validated against the results of drop-hammer impact test. Firstly, the whole impact process of this type of members was analyzed. Secondly, the impact resistance of HSC panels was compared with that of SCS panels from three aspects of dynamic response, failure mode and energy absorption coefficient. Finally, the influence of the steel plate ratio and impact height on the dynamic responses of members were emphatically discussed and the impact force time-history curve was simplified. The results showed that the FE model could reasonably predict the impact force and deflection of steel-concrete composite panels. The whole impact process of this type of members could be divided as four stages. The impact resistance of SCS panels was superior to HSC panels. The simplified impact-force history suggested in this work could be effectively employed in the impact resistance design of this kind of members.
-
[1] HILO S J, BADARUZZAMAN W H W, OSMAN S A, et al. A state-of-the-art review on double-skinned composite wall systems[J]. Thin-Wall Structure, 2015, 97:74-100. [2] LIEW J Y R, YAN J B, HUANG Z Y. Steel-concrete-steel sandwich composite structures-recent innovations[J]. Journal of Constructional Steel Research, 2017, 130:202-221. [3] 聂建国,孙彤,温凌燕,等.某会展中心大跨交叉钢-混凝土组合梁系楼盖设计[J].建筑结构学报, 2004, 25(6):123-125. [4] 樊健生,丁然,聂鑫,等.高性能双钢板混凝土结构研究与应用[J].建筑结构学报, 2022, 43(9):55-72. [5] WANG R, HAN L H, HOU C C. Behavior of concrete filled steel tubular (CFST) members under lateral impact:experiment and FEA model[J]. Journal of Constructional Steel Research, 2013, 80:188-201. [6] WANG R, HAN L H, ZHAO X L, et al. Experimental behavior of concrete filled double steel tubular (CFDST) members under low velocity drop weight impact[J]. Thin-Walled Structures, 2015, 97:279-295. [7] 安国青,赵晖,王蕊,等.外包不锈钢圆中空夹层钢管混凝土柱抗撞计算方法研究[J].工程力学, 2021, 38(6):227-236. [8] ZHAO H, WANG R, HOU C C, et al. Experimental behaviour of hollow reinforced concrete members with inner octagonal steel tube under lateral impact[J]. Advances in Structural Engineering, 2019, 22(15):3328-3340. [9] 聂建国,李法雄.钢-混凝土组合板单向受压稳定性研究[J].中国铁道科学, 2009, 30(6):27-32. [10] 吴丽丽,姜宇鹏,张栋栋,等.简支钢板-混凝土组合板受弯性能及承载力分析[J].建筑结构学报, 2015, 36(12):125-134. [11] 郭全全,杨列昂,周耀,等.单钢板混凝土组合板面外承载力计算方法[J].工业建筑, 2016, 46(10):33-35. [12] SOHEL K M A, LIEW J Y R. Behavior of steel-concrete-steel sandwich slabs subject to impact load[J]. Journal of Constructional Steel Research, 2014, 100:163-175. [13] ZHAO W Y, GUO Q Q, DOU X Q, et al. Impact response of steel-concrete composite panels:experiments and FE analyses[J]. Steel and Composite Structures, 2018, 26(3):255-263. [14] GUO Q Q, WANG Z Y, CHEN J, et al. Dynamic response and failure mode of steel-concrete composite panels under lowvelocity impact[J/OL]. International Journal of Impact Engineering, 2022, 162[2021-12-24]. https://10.1016/j.ijimpeng.2021.104128104128. [15] YAN C, WANG Y H, ZHAI X M. Low velocity impact performance of curved steel-concrete-steel sandwich shells with bolt connectors[J/OL]. Thin-Walled Structures, 2020, 150[2020-02-21] https://doi.org/10.1016/j.tws.2020.106672. [16] HAN L H, YAO G H, TAO Z. Performance of concrete-filled thin-walled steel tubes under pure torsion[J]. Thin-Walled Structures, 2007, 45(1):24-36. [17] ABRAMOWICZ W, JONES N. Dynamic axial crushing of square tubes[J]. International Journal of Impact Engineering, 1984, 2(2):179-208. [18] XIANG S, ZENG L, LIU Y H, et al. Experimental study on the dynamic behavior of T-shaped steel reinforced concrete columns under impact loading[J/OL]. Engineering Structures, 2020, 208[2020-02-12] https://doi.org/10.1016/j.engstruct.2020.110307. [19] Comite Euro-International du Beton. CEB-FIP model code 1990[M]. Trowbridge, Wiltshire, UK:Redwood Books, 1993:48-51. [20] MALVAR L J, ROSS C A. Review of strain rate effects for concrete in tension[J]. ACI Materials Journal, 1998, 95(6):735-739. [21] REMENNIKOV A M, KONG S Y, UY B. The response of axially restrained non-composite steel-concrete-steel sandwich panels due to large impact loading[J]. Engineering Structures, 2013, 49:806-818. [22] 中华人民共和国住房和城乡建设部.核电站钢板混凝土结构技术标准:GB/T 51340-2018[S].北京:中国计划出版社, 2018. [23] AN G Q, WANG R, ZHAO H, et al. Response of axial-loaded steel-concrete composite walls under low-velocity impact[J/OL]. Journal of Constructional Steel Research, 2023, 203[2023-01-27] https://doi.org/10.1016/j.jcsr.2023.107829. [24] LU J Y, WANG Y H, ZHAI X M. Response of flat steelconcrete-corrugated steel sandwich panel under drop-weight impact load by a hemi-spherical head[J/OL]. Journal of Building Engineering, 2021, 44[2021-06-18] https://doi.org/10.1016/j.jobe.2021.102890. [25] WANG R, YANG X, ZHAO H, et al. Damage evaluation of axial-loaded H-section steel columns during and after impact loading[J/OL]. Journal of Constructional Steel Research, 2022, 196[2022-07-14] https://doi.org/10.1016/j.jcsr.2022.107426. [26] WANG Y, QIAN X D, LIEW J Y R, et al. Experimental behavior of cement filled pipe-in-pipe composite structures under transverse impact[J]. International Journal of Impact Engineering, 2014, 72:1-16. [27] 王宇,钱旭东.多次侧向冲击下双层钢管混凝土结构的响应分析[J].振动与冲击, 2017, 36(2):1-6.
点击查看大图
计量
- 文章访问数: 43
- HTML全文浏览量: 2
- PDF下载量: 0
- 被引次数: 0