Numerical Analysis of Seismic Performance of Local Post-Tensioned Prestressed Assembled Concrete Frame Beam-Column Joints
-
摘要: 为了研究新型干湿混合式局部后张预应力装配式混凝土框架节点的抗震性能,采用ABAQUS软件对两种不同预应力筋形式的节点构件,即预应力筋为钢拉杆或高强钢筋,建立实体有限元模型进行数值模拟分析,并通过试验结果进行验证,最后对混凝土强度等级、预应力筋张拉力、轴压比等相关因素进行了参数分析。研究结果表明:考虑钢筋滑移的有限元模型模拟结果与试验结果基本吻合,钢拉杆节点的累计耗能约为高强钢筋节点的41%;混凝土强度由C30提高到C50时,两种节点的承载能力提高均不到5%;相比于高强钢筋节点,预应力筋张拉力的增加能够明显减小钢拉杆节点的屈服位移,提高其前期刚度、延性;在轴压比0.6内,轴压比的增大仅对高强钢筋节点的极限承载力有所提高。Abstract: In order to study the seismic performance of the new dry-wet combined precast concrete beam-column joints with local post-tensioned tendons,a solid finite element model was established by ABAQUS software to simulate the joints with high strength steel reinforcement and steel ties for prestressing tendons,and to verify with the experimental results. Finally, parametric analysis was carried out on the relevant factors such as concrete strength grade, prestressing tendon tension and axial compression ratio. The results of the study show that the simulation results of the finite element model considering the slip of the reinforcement are in general agreement with the tests. The cumulative energy consumption of the joints with steel ties is about 41% of that of the joints with high-strength steel. When the concrete strength is increased from C30 to C50, the load carrying capacity of both joints increases by less than 5%. Compared with joints with high-strength steel, the increase of the prestressing tendons tension can significantly reduce the yield displacement of the joints with steel ties and improve its pre-strength, stiffness and ductility.Within the axial pressure ratio of 0.6, the increase of the axial pressure ratio only improve the ultimate load capacity of the joints with high-strength steel.
-
[1] 吴刚,冯德成.装配式混凝土框架节点基本性能研究进展[J].建筑结构学报,2018,39(2):1-16. [2] 王海深,康迎杰,潘鹏.全装配式自复位耗能钢筋混凝土框架梁柱节点抗震性能研究[J].建筑结构学报,2022,43(4):158-166,176. [3] 申彦利,潘亮,齐欣.自复位预制预应力混凝土框架梁柱节点抗震性能分析[J].工程抗震与加固改造,2019,41(5):76-82. [4] 王建刚,张清,李智军,等.装配式梁-柱-牛腿组合节点承载性能分析[J].工业建筑,2021,51(1):68-72. [5] 杨辉. 局部后张预应力装配式框架节点抗震性能及应用研究[D].南京:东南大学,2020. [6] 杨辉,郭正兴,许傲逸,等.局部后张预应力装配式混凝土框架梁柱节点抗震试验研究[J].东南大学学报(自然科学版),2019,49(6):1101-1108. [7] 中华人民共和国住房和城乡建设部.混凝土结构设计规范:GB 50010—2010[S].北京:中国建筑工业出版社,2015. [8] 罗小勇,龙昊,曹琨鹏.灌浆套筒连接装配式梁柱节点精细有限元模型[J].哈尔滨工程大学学报,2021,42(5):641-648. [9] 方自虎,甄翌,李向鹏.钢筋混凝土结构的钢筋滞回模型[J].武汉大学学报(工学版),2018,51(7):613-619. [10] 刘健. 新老混凝土粘结的力学性能研究[D].大连:大连理工大学,2000. [11] 徐文强. 新老混凝土结合面抗剪强度计算方法与粘结-滑移本构模型[D].成都:西南交通大学,2021. [12] 周剑. 预制混凝土空心模剪力墙应用技术研究[D].北京:清华大学,2015. [13] 郑炜鋆.无粘结预应力混凝土梁的ABAQUS有限元模拟[J].福建建筑,2014(11):51-53,82. [14] 于建兵,郭正兴,郭悬.新型装配式混凝土框架梁柱节点抗震性能[J].工程科学与技术,2018,50(3):209-215. [15] 周翔. 轴压比系数对无粘结部分预应力扁梁节点抗震性能影响研究[D].福州:福州大学,2005.
点击查看大图
计量
- 文章访问数: 98
- HTML全文浏览量: 8
- PDF下载量: 4
- 被引次数: 0