An Optimal Design Method for Asymmetric Profile Steel Joints Considering Seismic Performances
-
摘要: 复杂大跨度建筑中非对称节点逐渐增多,其非对称性主要体现在构件尺寸不同、含钢率不同等,与常规对称节点相比,非对称节点在传力机理、破坏模式、承载性能上存在诸多差异,因此不能完全按照现有常规节点的计算方法进行设计。基于此,参考国内某工程非对称节点,采用ABAQUS软件进行三维建模,通过节点滞回曲线、骨架曲线、节点应力及损伤分布分析非对称节点下的抗震性能特点,并以此时的峰值荷载作为后续优化的抗震性能标准;进一步采用人工蜂群算法,以混凝土截面尺寸、型钢尺寸为输入条件,以抗震性能为边界条件、以经济性为目标函数,基于Python语言对ABAQUS进行二次开发,自动计算各设计参数组合下的抗震性能计算结果,并最终给出最优设计组合,实现了非对称型节点优化设计,提高建筑设计精细化、智能化水平。
-
关键词:
- 非对称型节点抗震设计 /
- 人工蜂群算法 /
- 目标优化 /
- ABAQUS二次开发
Abstract: The number of asymmetrical joints in complex long-span buildings is gradually increasing. The asymmetry is mainly reflected in different component sizes and different steel ratios. Compared with conventional symmetrical joints, there are many differences in the force transmission mechanism, failure mode and bearing properties of asymmetrical joints, so the design cannot be completely based on the calculation method of the existing conventional joints. Based on this, taking the asymmetric joints of a project in China as an example, ABAQUS software was used to conduct three-dimensional modeling. The seismic performance characteristics of asymmetric joints were analyzed through the hysteresis curve, skeleton curve, stress and damage distribution of joints, and the peak load at this time was taken as the seismic performance standard for subsequent optimization. Using the artifical bee colony algorithm, with the interface size and profile steel size as the input conditions, the seismic performance as the boundary condition, and the economy as the objective function, the secondary development of ABAQUS based on the Python language was carried out, and the optimal interface size and content were automatically calculated. The combination of steel ratio realized the optimal design of asymmetric joints. The research results could improve the level of refinement and intelligence in architectural design. -
[1] 徐超. 城市综合体TOD一体化设计策略探讨:以通州区运河核心区多功能用地项目设计为例[J]. 建筑技艺, 2021, 27(增刊1):5-12. [2] 王志飞.TOD模式下的城市更新策略研究:以上海莘庄地铁上盖为例[J].四川水泥,2022(4):29-31. [3] 曲亮, 马岩. 城市综合体设计整合策略研究:以保利未来大都汇为例[J]. 城市建筑空间, 2022, 29(5):5-15. [4] 唐红元,邓雪智,熊进刚,等.柱贯通梁柱节点非对称钢筋混凝土柱-钢梁框架结构抗连续倒塌性能研究[J].建筑结构学报,2021,42(4):92-102. [5] 康寅.肋板-盖板非对称加强型节点抗震性能试验研究[J].青岛理工大学学报,2019,40(4):27-33. [6] 崔振坤,肖云峰,靳思骞,等.非对称配钢钢骨混凝土柱-钢梁框架节点延性试验研究[J].长江大学学报(自然科学版),2016,13(1):39-43. [7] XIANG P, DENG Z H, SU Y S, et al. Experimental investigation on joints between steel-reinforced concrete T-shaped column and reinforced concrete beam under bidirectional low-cyclic reversed loading[J]. Advances in Structural Engineering, 2016, 20(3):446-460. [8] 王博, 白国良, 代慧娟, 等. 低周反复荷载下强梁弱柱型钢混凝土变柱T型节点力学性能研究[J]. 土木工程学报,2014,47(3):47-58. [9] 余同希, 薛璞. 工程塑性力学[M]. 北京:高等教育出版社, 2010. [10] 沈聚敏, 周锡元,高小旺,等. 抗震工程学[M]. 北京:中国建筑工业出版社, 2000. [11] 过镇海. 钢筋混凝土原理[M]. 北京:清华大学出版社, 1999. [12] 秦全德,程适,李丽,等.人工蜂群算法研究综述[J].智能系统学报,2014,9(2):127-135. [13] KEFAYAT M, ARA A L, NIAKI S. A hybrid of ant colony optimization and artificial bee colony algorithm for probabilistic optimal placement and sizing of distributed energy resources[J]. Energy Conversion & Management, 2015, 92(5):149-161. [14] 张红标. 建筑结构设计成本优化研究[D].杭州:浙江大学,2012. [15] GAO W, SHENG H, WANG J, et al. Artificial bee colony algorithm based on novel mechanism for fuzzy portfolio selection[J]. IEEE Transactions on Fuzzy Systems, 2019, 27(5):966-978. [16] 王辉,陈卫忠,李廷春,等.地下工程智能连续优化方法的实现Ⅰ:参数化设计及优化方法[J].水利学报,2014,45(1):42-49. [17] 王辉,陈卫忠,李廷春,等.地下工程智能连续优化方法的实现Ⅱ:大型地下厂房空间分布优化研究[J].水利学报,2014,45(2):187-196. [18] GU W J, YU Y G, HU W. Artificial bee colony algorithm-based parameter estimation of fractional-order chaotic system with time delay[J]. IEEE/CAA Journal of Automatica Sinica, 2017, 4(1):107-113.
点击查看大图
计量
- 文章访问数: 84
- HTML全文浏览量: 8
- PDF下载量: 4
- 被引次数: 0