Research on Construction Mechanical Behavior of Large-Scale Comprehensive Renovation and Performance Improvement of Operating Subway Station
-
摘要: 为提升车站整体性能,深圳市黄木岗交通枢纽工程需对运营地下三层车站共456.7 m长侧墙进行贯通改造。为确保运营安全,采用三维增量有限元方法对运营地铁站大规模贯通改造施工力学行为进行了研究。结果表明:1)既有站单侧相邻基坑开挖,导致顶板及底板跨中弯矩、框架柱弯矩、车站水平位移增大,有必要优化相邻基坑支护方案以控制既有结构的内力及变形;2)既有站降水可以降低临时支撑轴力及底板的跨中弯矩增幅;3)随着既有侧墙开洞的贯通层数及跨度增加,既有车站的变形和内力均显著增大,通过架设临时立柱"预支护"处理,可有效降低既有结构板的弯矩及变形;4)对既有站降水并架设临时支撑再改造的方案是控制既有站受力及变形的相对最优方案。Abstract: To improve the overall performance of the subway station, Shenzhen Huangmugang transportation hub project needs to comprehensively renovate a long wall of 456.7 m of the operating subway station on three floors of the basement. In order to ensure operational security, a three-dimensional incremental finite element method was applied to study the construction mechanical behavior of the large-scale comprehensive renovation of the operating subway station. The results show that:1) The excavation of adjacent foundation pits in the existing station leads to the increase in the mid-span moment of the roof and baseboard, the moment of the frame column, and the horizontal displacement of the station. Therefore, it's necessary to optimize the support scheme of adjacent foundation pits to control the internal force and deformation of the existing structure. 2) The precipitation in the existing station can decrease the increment of the mid-span moment of the baseboard and the axial force of temporary columns. 3) As the layer number and span in the comprehensive existing side wall opening increase, the internal force and deformation of the existing station significantly improve. In addition, the increase in moment and deformation of existing structural plates can be decreased effectively by setting up temporary columns for pre-support. 4) In order to control the stress and deformation of the existing station, the scheme featuring precipitation and the establishment of temporary columns for renovation is relatively optimal.
-
[1] 中国城市轨道交通协会.城市轨道交通2021年度数据统计和分析[J].现代城市轨道交通,2022(5):177. [2] ADMIRAAL H, CORNARO A. Future cities, resilient cities-the role of underground space in achieving urban resilience[J]. Underground Space, 2020,5(3):223-228. [3] CUI J, BROERE W, LIN D. Underground space utilisation for urban renewal[J]. Tunnelling and Underground Space Technology, 2021,108.DOI: 10.1016/j.tust.2020.103726. [4] WU W, GE S, YUAN Y. Seismic response characteristics of cross interchange metro stations:transversal response of the three-storey section[J]. Engineering Structures, 2022,252.DOI: 101016/j.engstruct.2021. [5] 姜忻良,郑刚,侯树民,等. 天津地铁既有线路车站改造研究[J].岩土力学,2002,23(4):504-507. [6] 杨德春,杨璐菡. 新建换乘车站穿越既有车站结构关键技术处理[J].现代隧道技术,2018,55(增刊2):185-193. [7] 黄平生,高志宏,杨开武,等. 分期实施地铁车站破墙接驳技术的工程实践[J]. 市政技术,2010,28(增刊2):91-95,132. [8] 杨德春,刘建国. 对建成地铁车站结构改造设计与施工的数值模拟分析[J].现代隧道技术,2012,49(3):94-103. [9] 周华海. 某地铁车站结构改造设计和施工[J]. 四川建筑,2013,33(1):181-183. [10] 张长泰. 换乘站施工破除既有车站结构的力学分析[J]. 市政技术,2014,32(1):90-92. [11] 张立明,郭一斌,赵超颖,等. 软土地区既有地铁车站地下结构改造[J].都市快轨交通,2015(3):105-108,119. [12] 李储军,王立新,胡瑞青,等. 黄土地区地铁车站换乘改造施工力学行为研究[J]. 铁道标准设计,2019,63(9):101-109.DOI: 10.13238/j.issn.1004-2954.201811110004. [13] 苏卜坤,姜燕. 既有地铁车站换乘改造方案结构分析及三维数值模拟[J]. 广东土木与建筑,2020,27(6):56-60,65. DOI: 10.19731/j.gdtmyjz.2020.06.014. [14] 王其升. 既有地铁车站运营期间换乘改造施工技术[J].铁道建筑技术,2021(7):116-120. [15] 安东辉,邵文. 地铁车站扩建改造工程对原有结构受力影响分析[J]. 铁道标准设计,2020,64(11):129-135.DOI: 10.13238/j.issn.1004-2954.201911060004. [16] 李聪,王飞,张晨晨. 富水地层既有地铁车站扩宽改造关键技术研究[J]. 现代隧道技术,2021,58(增刊2):172-177. DOI: 10.13807/j.cnki.mtt.2021.S2.026.
点击查看大图
计量
- 文章访问数: 113
- HTML全文浏览量: 36
- PDF下载量: 0
- 被引次数: 0