Numerical Analysis of Crack Resistance of Concrete Structure of Ultra-Long Round Stadium During Construction
-
摘要: 超长混凝土结构在温度变化和材料收缩过程中会产生内力和变形,容易使结构水平构件超过混凝土受拉强度而开裂。针对某周长约为670 m环形超长体育场混凝土结构,研究在施工过程中采用不同措施对主体结构的抗裂效果。使用有限元软件对体育场一层混凝土结构进行三维建模,通过"生死单元"实现结构施工过程,通过子程序定义主体结构的混凝土收缩、后浇带混凝土的膨胀和时变弹模。模拟结果表明当按照环形结构在东西两侧由北向南依次施工并合龙的施工组织顺序,早期浇筑的结构北部两侧转角处混凝土板由于温度降低和收缩原因产生的应力水平最高;而使用膨胀后浇带混凝土能有效补偿拉应力和控制裂缝产生。在环境温度低的时期,调整结构合龙时间能大幅降低温度对结构的影响;合理安排后浇带跳仓施工顺序,也能避免板应力沿结构长度的累积。Abstract: The ultra-long concrete structure produces internal force and deformation with temperature change and concrete shrinkage, which results in the cracking of horizontal structure specimens exceeding the tensile strength of the concrete. For an ultra-long round concrete stadium with a perimeter of about 670 m, the crack resistance of the main structure under different measures in construction was studied. Three-dimensional modeling was performed on the concrete structure of the first floor of the stadium by finite element software, and the construction process was realized through the birth and death element method. The contraction of the concrete in the main structure, as well as the expansion and the time-dependent elastic modulus of the concrete in the post-pouring belt were defined based on the subprogram. The simulation results show that when the east and west sides of the round structure are constructed from north to south in succession and finally integrated, concrete slabs at the northern corner of the early poured structure show the highest stress level because of temperature reduction and shrinkage. In addition, the expanded concrete in the post-pouring belt can effectively compensate for tensile stress and control cracks. The adjustment of structural integration time on days with low temperatures can greatly alleviate the influence of temperature on the structure. Furthermore, a rational construction sequence of the post-pouring belt can avoid the accumulation of plate stress along the structural length.
-
[1] 中华人民共和国住房和城乡建设部.混凝土结构设计规范:GB 50010-2010[S]. 北京:中国建筑工业出版社,2010. [2] 杨毅超,张德锋,冯伟明,等. 超长混凝土结构裂缝控制关键技术在工程中的应用研究[J]. 建筑结构,2018,48(18):59-63. [3] 张喜平,刘仲洋,王山,等. 跳仓法施工中超长大体积混凝土配合比优化设计研究[J]. 建筑结构,2021,51(增刊2):1017-1019. [4] 董晓鹏. 滑动端跨对超长高架车站结构的影响分析[J]. 铁道勘察,2018,44(1):121-124. [5] 贾子文,郑江,李存良,等. 超长、超宽、超刚无缝多层钢框架厂房施工过程温度效应仿真分析[J]. 工业建筑,2020,50(11):119-124. [6] 周笋,李国胜,王雪生,等. 超长大体积混凝土跳仓法工程设计中的关键问题[J]. 建筑结构,2019,49(18):120-130. [7] 黄用军,何志力,邹国强,等. 深圳国际会展中心结构设计研究[J]. 建筑结构,2020,50(2):1-8. [8] 王强,尹润杰,刘明,等. 某超长地下室混凝土结构无缝设计计算研究[J]. 工业建筑,2010,40(10):65-70. [9] 吴发红,陈桂平,嵇蔚冰. 超长框架的温度、收缩应力设计及控制措施[J]. 工业建筑,2013,43(12):144-148. [10] 熊学玉,向瑞斌,汪继恕,等. 超长混凝土结构预应力设计[J]. 建筑结构,2018,48(8):5-8,15. [11] 朱伯芳. 大体积混凝土温度应力与温度控制[M]. 2版. 北京:中国水利水电出版社,2012. [12] 范重,陈巍,李夏,等. 超长框架结构温度作用研究[J]. 建筑结构学报,2018,39(1):136-145. [13] 王铁梦. 工程结构裂缝控制[M]. 2版. 北京:中国建筑工业出版社,2017. [14] 张士昌,徐晓明,史炜洲,等. 苏州奥体中心体育场看台结构设计[J]. 建筑结构,2019,49(23):7-11. [15] 游宝坤. 膨胀剂及其补偿收缩混凝土[M]. 北京:中国建筑工业出版社,2005. [16] 阳小泉,刘国银. 西安奥体中心体育馆超长预制清水混凝土看台设计研究[J]. 建筑结构,2022,52(1):7-11,23. [17] 郭海浩,周安,高明月,等. 合肥火车站地下广场超长混凝土顶板温度作用及效应分析[J]. 合肥工业大学学报(自然科学版),2019,42(11):1536-1539,1545.
点击查看大图
计量
- 文章访问数: 72
- HTML全文浏览量: 18
- PDF下载量: 3
- 被引次数: 0