Life Prediction of Internal Curing Concrete in Chloride Environment Based on Nernst-Plank Equation
-
摘要: 沿海、盐湖及除冰盐地区混凝土结构受氯离子侵蚀严重,已造成巨大经济损失。传统基于Fick第二定律的氯离子传输模型考虑因素单一,难以反映实际工程中氯离子的传输行为。以Nernst-Plank方程为代表的离子传输模型考虑了多种因素协同作用,但因公式复杂不便求解,限制了其在工程中的应用。研究以Nernst-Plank方程为基础,分析了水泥基材料在侵蚀环境中的多离子传输模型,开展了氯离子非稳态电迁移试验和混凝土水分传输试验,并考虑混凝土拌和物组成、胶凝材料物理化学特性和结构服役环境特征等,采用STADIUM®软件对普通混凝土和内养护混凝土中氯离子传输过程进行模拟。结果表明:内养护作用可以提高混凝土的抗离子侵蚀能力,延长混凝土结构的服役寿命,但后期改善程度有限;STADIUM®软件可以较好地模拟氯离子在混凝土中的传输行为,为混凝土结构的寿命预测提供了一种更为便捷的方法。
-
关键词:
- Nernst-Plank方程 /
- 内养护 /
- 氯盐侵蚀 /
- 传输模型 /
- 寿命预测
Abstract: Concrete structures in coastal areas, salt lakes, and deicing salt areas are seriously eroded by chloride ions, which has caused great economic losses. Traditional chloride transport models based on Fick's second law fail to consider influencing factors comprehensively and cannot reflect the transport behavior of chloride ions in field engineering. In addition, the chloride transport model based on the Nernst-Plank equation takes into account the synergy of multiple factors, but its equation is difficult to be solved, which thus limits its application in engineering. According to the Nernst-Plank equation, this study analyzed the multi-ion transport model of cement-based materials under erosion and carried out an unsteady state electromigration test of the chlorine ions and a moisture transport test of the concrete. In addition, the study considered the composition of the concrete mixture, the physical and chemical properties of binding materials, and the service environment characteristics of the structure and simulated the chloride transport process in ordinary concrete and internal curing concrete by using the STADIUM® software. The results show that internal curing can improve the resistance of concrete to ion erosion and prolong the service life of the concrete structures, but the improvement is limited in the later stage. Furthermore, STADIUM® software can better simulate the transport behavior of chloride ions in concrete, which provides a convenient method for predicting the life of concrete structures.-
Key words:
- Nernst-Plank equation /
- internal curing /
- chloride erosion /
- transport model /
- life prediction
-
[1] 王鹏刚,莫芮,隋晓萌,等. 混凝土中氯盐-硫酸盐耦合侵蚀的化学-损伤-传输模型研究进展[J]. 硅酸盐学报,2022,50(2):512-521. [2] 王建民,刘冠国,雷笑,等. 盐雾环境下混凝土抗氯离子性能试验研究[J]. 工业建筑,2013,43(11):89-91. [3] 于英俊,郭小华,王玲,等. 酸和氯盐耦合作用下混凝土结构耐久性评估及修复[J]. 工业建筑,2019,49(3):180-185. [4] 钟小平,金伟良,张宝健. 氯盐环境下混凝土结构的耐久性设计方法[J]. 建筑材料学报,2016,19(3):544-549. [5] 付传清,屠一军,金贤玉,等. 荷载和环境共同作用下混凝土中氯离子传输的试验研究[J]. 水利学报,2016,47(5):674-684. [6] WANG Y, FU K. Comparisons of instantaneous chloride diffusion coefficients determined by RCM method and chloride natural diffusion test[J]. Construction and Building Materials, 2019, 223(30):595-604. [7] YANG C C, SU J K. Approximate migration coefficient of interfacial transition zone and the effect of aggregate content on the migration coefficient of mortar[J]. Cement & Concrete Research, 2002, 32(10):1559-1565. [8] LU X Y. Application of the Nernst-Einstein equation to concrete[J]. Cement & Concrete Research, 1997, 27(2):293-302. [9] 祝小靓,金峰,周虎,等. 基于Permit法的纳固材料混凝土表层氯离子扩散性能研究[J]. 工业建筑,2018,48(3):37-40. [10] DA B, YU H F, MA H Y, et al. Chloride diffusion study of coral concrete in a marine environment[J]. Construction and Building Materials, 2016, 123(1):47-58. [11] 罗大明,张桂涛. 基于贝叶斯理论的氯离子扩散系数计算模型[J]. 西安建筑科技大学学报(自然科学版),2019,51(5):710-716. [12] 关博文,杨涛,吴佳育,等. 交变荷载作用下损伤混凝土中氯离子传输行为[J]. 建筑材料学报,2018,21(2):304-308. [13] 延永东,刘荣桂,陆春华,等. 养护湿度对混凝土内氯离子传输的影响[J]. 哈尔滨工业大学学报,2016,48(12):148-152. [14] 袁利强,孙丛涛,程火焰. 非饱和混凝土氯离子传输模型研究综述[J]. 混凝土,2015(6):32-36. [15] 胡劲哲,牛建刚,孙丛涛,等. 海洋大气区氯离子在混凝土中的沉积与传输行为研究综述[J]. 土木与环境工程学报(中英文),2020,42(2):165-178. [16] 杨燕,谭康豪,覃英宏. 混凝土内氯离子扩散影响因素的研究综述[J]. 材料导报,2021,35(13):13109-13118. [17] TOUMI A, FRAN OIS R, ALVARADO O. Experimental and numerical study of electrochemical chloride removal from brick and concrete specimens[J]. Cement & Concrete Research, 2007, 37(1):54-62. [18] SAMSON E, MARCHAND J. Modeling the transport of ions in unsaturated cement-based materials[J]. Computers & Structures, 2007, 85(23/24):1740-1756. [19] 罗大明,牛荻涛. 不同湿度环境下内养护混凝土气体传输性能试验研究[J]. 建筑结构学报,2021,42(8):193-203. [20] RAOUFI K, SCHLITTER J, BENTZ D, et al. Parametric assessment of stress development and cracking in internally cured restrained mortars experiencing autogenous deformations and thermal loading[J]. Advances in Civil Engineering, 2011(1):1-16. [21] HELFFERICH F G. Ion exchange[M]. Courier Dover Publications, 1962. [22] BOCKRIS J O, REDDY A K. Modern electrochemistry:an introduction to an interdisciplinary area[M]. Springer, 1973. [23] POURBAIX M. Atlas of electrochemical equilibria[M]. New York:Pergamon Press, 1966. [24] HIDALGO A, VERA G, CLIMENT M A, et al. Measurements of chloride activity coefficients in real Portland cement paste pore solutions[J]. Journal of the American Ceramic Society, 2001, 84(12):3008-3012. [25] PANKOW J F. Aquatic chemistry concepts[M]. Lewis Publishers, 1991. [26] SAMSON E, LEMAIRE G, MARCHAND J, et al. Modeling chemical activity effects in strong ionic solutions[J]. Computational Materials Science, 1999, 15(3):285-294. [27] BEAR J, BACHMAT Y. Introduction to modeling of transport phenomena in porous media[M]. The Netherlands:Kluwer Academic Publishers, 1990. [28] SAMSON E, MARCHAND J. Modeling the effect of temperature on ionic transport in cementitious materials[J]. Cement and Concrete Research, 2007, 37(3):455-468. [29] MACQUARRIE K T B, MAYER K U. Reactive transport modeling in fractured rock:a state-of-the-science review[J]. Earth-Science Reviews, 2005, 72(3/4):189-227. [30] BENTZ D P, LURA P, ROBERTS J W. Mixture proportioning for internal curing[J]. Concrete International, 2005, 27(2):35-40. [31] Standard test method for density, absorption, and voids in hardened concrete:ASTM C642-21[S]. West Conshohocken, PA:ASTM International, 2021. [32] User guide:Stadium® Lab V3.0[S]. Quebec City, Quebec:SIMCO Technologies Inc., 2011. [33] BENTZ D P. Influence of internal curing using lightweight aggregates on interfacial transition zone percolation and chloride ingress in mortars[J]. Cement and Concrete Composites, 2009, 31(5):285-289. [34] 郝磊,陈峰,彭文锋,等. 沿海混凝土结构氯离子对流区深度计算模型[J]. 硅酸盐通报,2022,41(5):1627-1637.
点击查看大图
计量
- 文章访问数: 87
- HTML全文浏览量: 15
- PDF下载量: 1
- 被引次数: 0