中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊
中国建筑科学领域高质量科技期刊分级目录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Nernst-Plank方程的氯盐环境内养护混凝土寿命预测

罗大明 李凡 牛荻涛

罗大明, 李凡, 牛荻涛. 基于Nernst-Plank方程的氯盐环境内养护混凝土寿命预测[J]. 工业建筑, 2022, 52(10): 131-138. doi: 10.13204/j.gyjzG22073005
引用本文: 罗大明, 李凡, 牛荻涛. 基于Nernst-Plank方程的氯盐环境内养护混凝土寿命预测[J]. 工业建筑, 2022, 52(10): 131-138. doi: 10.13204/j.gyjzG22073005
LUO Daming, LI Fan, NIU Ditao. Life Prediction of Internal Curing Concrete in Chloride Environment Based on Nernst-Plank Equation[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(10): 131-138. doi: 10.13204/j.gyjzG22073005
Citation: LUO Daming, LI Fan, NIU Ditao. Life Prediction of Internal Curing Concrete in Chloride Environment Based on Nernst-Plank Equation[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(10): 131-138. doi: 10.13204/j.gyjzG22073005

基于Nernst-Plank方程的氯盐环境内养护混凝土寿命预测

doi: 10.13204/j.gyjzG22073005
基金项目: 

国家自然科学基金项目(51808438);陕西省教育厅青年创新团队建设科研计划项目(21JP059)。

详细信息
    作者简介:

    罗大明,男,1986年出生,博士,副教授,硕士生导师。电子信箱:dmluo@xauat.edu.cn

Life Prediction of Internal Curing Concrete in Chloride Environment Based on Nernst-Plank Equation

  • 摘要: 沿海、盐湖及除冰盐地区混凝土结构受氯离子侵蚀严重,已造成巨大经济损失。传统基于Fick第二定律的氯离子传输模型考虑因素单一,难以反映实际工程中氯离子的传输行为。以Nernst-Plank方程为代表的离子传输模型考虑了多种因素协同作用,但因公式复杂不便求解,限制了其在工程中的应用。研究以Nernst-Plank方程为基础,分析了水泥基材料在侵蚀环境中的多离子传输模型,开展了氯离子非稳态电迁移试验和混凝土水分传输试验,并考虑混凝土拌和物组成、胶凝材料物理化学特性和结构服役环境特征等,采用STADIUM®软件对普通混凝土和内养护混凝土中氯离子传输过程进行模拟。结果表明:内养护作用可以提高混凝土的抗离子侵蚀能力,延长混凝土结构的服役寿命,但后期改善程度有限;STADIUM®软件可以较好地模拟氯离子在混凝土中的传输行为,为混凝土结构的寿命预测提供了一种更为便捷的方法。
  • [1] 王鹏刚,莫芮,隋晓萌,等. 混凝土中氯盐-硫酸盐耦合侵蚀的化学-损伤-传输模型研究进展[J]. 硅酸盐学报,2022,50(2):512-521.
    [2] 王建民,刘冠国,雷笑,等. 盐雾环境下混凝土抗氯离子性能试验研究[J]. 工业建筑,2013,43(11):89-91.
    [3] 于英俊,郭小华,王玲,等. 酸和氯盐耦合作用下混凝土结构耐久性评估及修复[J]. 工业建筑,2019,49(3):180-185.
    [4] 钟小平,金伟良,张宝健. 氯盐环境下混凝土结构的耐久性设计方法[J]. 建筑材料学报,2016,19(3):544-549.
    [5] 付传清,屠一军,金贤玉,等. 荷载和环境共同作用下混凝土中氯离子传输的试验研究[J]. 水利学报,2016,47(5):674-684.
    [6] WANG Y, FU K. Comparisons of instantaneous chloride diffusion coefficients determined by RCM method and chloride natural diffusion test[J]. Construction and Building Materials, 2019, 223(30):595-604.
    [7] YANG C C, SU J K. Approximate migration coefficient of interfacial transition zone and the effect of aggregate content on the migration coefficient of mortar[J]. Cement & Concrete Research, 2002, 32(10):1559-1565.
    [8] LU X Y. Application of the Nernst-Einstein equation to concrete[J]. Cement & Concrete Research, 1997, 27(2):293-302.
    [9] 祝小靓,金峰,周虎,等. 基于Permit法的纳固材料混凝土表层氯离子扩散性能研究[J]. 工业建筑,2018,48(3):37-40.
    [10] DA B, YU H F, MA H Y, et al. Chloride diffusion study of coral concrete in a marine environment[J]. Construction and Building Materials, 2016, 123(1):47-58.
    [11] 罗大明,张桂涛. 基于贝叶斯理论的氯离子扩散系数计算模型[J]. 西安建筑科技大学学报(自然科学版),2019,51(5):710-716.
    [12] 关博文,杨涛,吴佳育,等. 交变荷载作用下损伤混凝土中氯离子传输行为[J]. 建筑材料学报,2018,21(2):304-308.
    [13] 延永东,刘荣桂,陆春华,等. 养护湿度对混凝土内氯离子传输的影响[J]. 哈尔滨工业大学学报,2016,48(12):148-152.
    [14] 袁利强,孙丛涛,程火焰. 非饱和混凝土氯离子传输模型研究综述[J]. 混凝土,2015(6):32-36.
    [15] 胡劲哲,牛建刚,孙丛涛,等. 海洋大气区氯离子在混凝土中的沉积与传输行为研究综述[J]. 土木与环境工程学报(中英文),2020,42(2):165-178.
    [16] 杨燕,谭康豪,覃英宏. 混凝土内氯离子扩散影响因素的研究综述[J]. 材料导报,2021,35(13):13109-13118.
    [17] TOUMI A, FRAN OIS R, ALVARADO O. Experimental and numerical study of electrochemical chloride removal from brick and concrete specimens[J]. Cement & Concrete Research, 2007, 37(1):54-62.
    [18] SAMSON E, MARCHAND J. Modeling the transport of ions in unsaturated cement-based materials[J]. Computers & Structures, 2007, 85(23/24):1740-1756.
    [19] 罗大明,牛荻涛. 不同湿度环境下内养护混凝土气体传输性能试验研究[J]. 建筑结构学报,2021,42(8):193-203.
    [20] RAOUFI K, SCHLITTER J, BENTZ D, et al. Parametric assessment of stress development and cracking in internally cured restrained mortars experiencing autogenous deformations and thermal loading[J]. Advances in Civil Engineering, 2011(1):1-16.
    [21] HELFFERICH F G. Ion exchange[M]. Courier Dover Publications, 1962.
    [22] BOCKRIS J O, REDDY A K. Modern electrochemistry:an introduction to an interdisciplinary area[M]. Springer, 1973.
    [23] POURBAIX M. Atlas of electrochemical equilibria[M]. New York:Pergamon Press, 1966.
    [24] HIDALGO A, VERA G, CLIMENT M A, et al. Measurements of chloride activity coefficients in real Portland cement paste pore solutions[J]. Journal of the American Ceramic Society, 2001, 84(12):3008-3012.
    [25] PANKOW J F. Aquatic chemistry concepts[M]. Lewis Publishers, 1991.
    [26] SAMSON E, LEMAIRE G, MARCHAND J, et al. Modeling chemical activity effects in strong ionic solutions[J]. Computational Materials Science, 1999, 15(3):285-294.
    [27] BEAR J, BACHMAT Y. Introduction to modeling of transport phenomena in porous media[M]. The Netherlands:Kluwer Academic Publishers, 1990.
    [28] SAMSON E, MARCHAND J. Modeling the effect of temperature on ionic transport in cementitious materials[J]. Cement and Concrete Research, 2007, 37(3):455-468.
    [29] MACQUARRIE K T B, MAYER K U. Reactive transport modeling in fractured rock:a state-of-the-science review[J]. Earth-Science Reviews, 2005, 72(3/4):189-227.
    [30] BENTZ D P, LURA P, ROBERTS J W. Mixture proportioning for internal curing[J]. Concrete International, 2005, 27(2):35-40.
    [31] Standard test method for density, absorption, and voids in hardened concrete:ASTM C642-21[S]. West Conshohocken, PA:ASTM International, 2021.
    [32] User guide:Stadium® Lab V3.0[S]. Quebec City, Quebec:SIMCO Technologies Inc., 2011.
    [33] BENTZ D P. Influence of internal curing using lightweight aggregates on interfacial transition zone percolation and chloride ingress in mortars[J]. Cement and Concrete Composites, 2009, 31(5):285-289.
    [34] 郝磊,陈峰,彭文锋,等. 沿海混凝土结构氯离子对流区深度计算模型[J]. 硅酸盐通报,2022,41(5):1627-1637.
  • 加载中
计量
  • 文章访问数:  87
  • HTML全文浏览量:  15
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-30
  • 网络出版日期:  2023-03-22

目录

    /

    返回文章
    返回