Research on the Axial Compression Behavior of Steel-Reinforced Ultra-High Performance Concrete-Filled Stainless Steel Tubular Columns
-
摘要: 不锈钢管混凝土柱在海港工程、海洋工程等腐蚀环境下具有较好的应用前景。为进一步提升此类结构的性能,提出了一种组合结构,即内置钢骨的不锈钢管超高性能混凝土柱。同时,以径厚比、长径比和含骨率等为参数设计制作了6个短柱和8个中长柱试件,进行了轴心受压试验和有限元模拟分析,研究了试件的破坏形态、破坏机理,以及相关参数对试件力学性能的影响规律。结果表明:试件的承载力及延性随着径厚比和长径比的减小而增大,随着含骨率和内置钢骨强度的增加而增加;试件延性随着核心混凝土强度增大而降低,承载力与之相反。根据试验和有限元的分析结果,提出了内置钢骨的不锈钢管超高性能混凝土柱的承载力预测模型,为此类结构的工程应用提供了参考。Abstract: Concrete-filled stainless steel tubular columns show excellent prospects for application in corrosive environments such as harbor engineering and marine engineering. To further develop the performance of such structures, a composite structure, i. e. steel-reinforced ultra-high performance concrete-filled stainless steel tubular column was proposed in this paper. Meanwhile, six short and eight medium-length column specimens were designed and fabricated with the parameters of diameter to thickness ratio, length to diameter ratio, steel profile content ratios, etc. Axial compression experiments and finite element analysis were executed to investigate the failure mode and failure mechanism of the specimens, as well as the influence of relevant parameters on the mechanical performance of the specimens. The results showed that the bearing capacity and ductility of the specimens increased with the decreasing of the diameter to thickness ratios and length to diameter ratios, and increased with the increding of the steel profile content ratios and strength of the pre-embedded steel profile; the ductility of the specimen decreased with the increase in core concrete strength, but the bearing capacity was the opposite. Based on the experimental and finite element results, a prediction model for the bearing capacity of steel-reinforced ultra-high performance concrete-filled stainless steel tubular was proposed, providing a reference for the engineering application of such structures.
-
[1] 韩林海.钢管混凝土结构:理论与实践[M].2版.北京:科学出版社,2007. [2] BEN Y, EHAB E. Experimental investigation of concrete-filled cold-formed high strength stainless steel tube columns[J]. Journal of Constructional Steel Research, 2005, 62(5):484-492. [3] ELLOBODY E. Nonlinear behavior of concrete-filled stainless steel stiffened slender tube columns[J]. Thin-Walled Structures, 2007, 45(3):259-273. [4] 张纪刚,舒凡,赵铁军,等.不锈钢管中管混凝土海洋平台导管腿轴压性能试验研究[J].建筑结构学报,2018,39(增刊1):279-285. [5] 刘艳芝,邓集钱,谭清华.内嵌十字型钢的方形劲性不锈钢管混凝土柱耐火性能[J].建筑科学与工程学报,2019,36(3):66-73. [6] 李永进,廖飞宇,黄海清.矩形不锈钢管混凝土柱双向偏压力学性能试验研究[J].建筑钢结构进展,2018,20(2):60-66. [7] 张建周,郭旺,安泽宇.型钢-PBL加劲型方不锈钢管混凝土轴压短柱非线性分析[J].建筑结构,2017,47(增刊2):249-254. [8] 代鹏,杨璐,卫璇,等.不锈钢管混凝土短柱轴压承载力试验研究[J].工程力学,2019,36(增刊1):298-305. [9] 马国梁. 不锈钢管再生混凝土轴压和弯曲性能研究[D].大连:大连理工大学,2013. [10] 廖飞宇.圆不锈钢管混凝土轴压力学性能的有限元分析[J].福建农林大学学报(自然科学版),2009,38(6):659-662. [11] 徐晨豪,赵俊亮,金国平.圆不锈钢管混凝土轴压短柱三维有限元分析[J].混凝土,2017(7):44-46,49. [12] PATEL V, HASSANEIN M, THAI H T, et al. Behaviour of axially loaded circular concrete-filled bimetallic stainless-carbon steel tubular short columns[J]. Engineering Structures, 2017,147:583-597. [13] 乔崎云,张雯雯,曹万林,等.薄壁不锈钢管-钢骨混凝土短柱轴压力学性能试验研究[J].工业建筑,2020,50(2):143-149. [14] 王德辉,史才军,吴林妹.超高性能混凝土在中国的研究和应用[J].硅酸盐通报,2016,35(1):141-149. [15] 韦建刚,罗霞,欧智菁,等.圆高强钢管超高性能混凝土短柱轴压性能试验研究[J]. 建筑结构学报, 2020, 41(11): 16-28. [16] 孙墨林. 钢管约束型钢超高强混凝土短柱轴压受力性能研究[D]. 大连:大连理工大学, 2017. [17] 中华人民共和国住房和城乡建设部. 钢管混凝土结构技术规范:GB 50936—2014[S]. 北京:中国建筑工业出版社, 2014. [18] 中华人民共和国国家质量监督检验检疫总局. 金属材料 拉伸试验 第1部分:室温试验方法:GB/T 228.1—2021[S]. 北京:中国标准出版社, 2021. [19] 中国工程建设标准化协会. 超高性能混凝土(UHPC)技术要求:T/CECS 10107—2020[S]. 北京:中国计划出版社, 2020. [20] 陆纪平. FRP约束超高性能混凝土受压性能[D]. 南京:东南大学, 2020. [21] RAMBERG W, WILLIAM R O. Description of stress-strain curves by three parameters:No.NACA-TN-902[R]. National Advisory Committee for Aeronautics, Technical Note, 1943. [22] BSI. Eurocode 3-Design of steel structures-part 1-4: general rules-supplementary rules for stainless steels:EN 1993-1-4[S].UK: British Standards Institution, 2006. [23] MANDER J, PRIESTLEY M. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114(8): 1804-1826. [24] GRAYBEAL B A. Compressive behavior of ultra-high-performance fiber-reinforced concrete[J]. ACI Materials Journal, 2007, 104(2):146. [25] LIM J C, OZBAKKALOGLU T. Stress-strain model for normal-and light-weight concretes under uniaxial and triaxial compression[J]. Construction & Building Materials, 2014, 71: 492-509. [26] AHMED M, LIANG Q Q, PATEL V I, et al. Nonlinear analysis of rectangular concrete-filled double steel tubular short columns incorporating local buckling[J]. Engineering Structures, 2018,175:13-26. [27] LIANG Q Q. Performance-based analysis of concrete-filled steel tubular beam-columns, part I: theory and algorithms[J]. Journal of Constructional Steel Research, 2009, 65(2):363-372. [28] LU Q R, XU L H, CHI Y, et al. A novel analysis-oriented theoretical model for steel tube confined ultra-high performance concrete[J/OL]. Composite Structures, 2021,264[2021-02-23].https://doi.org/10.1016/j.compstruct.2021.113713. [29] HU H T, HUANG C S, WU M H, et al. Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect[J]. Journal of Structural Engineering, 2003, 129(10):1322-1329. [30] LIANG Q Q, FRAGOMENI S. Nonlinear analysis of circular concrete-filled steel tubular short columns under axial loading[J]. Journal of Constructional Steel Research, 2009, 65(12):2186-2196. [31] TANG J L, HINO S I, KURODA I, et al. Modeling of stress-strain relationships for steel and concrete in concrete filled circular steel tubular columns[J]. Steel Construction Engineering, 1996, 3(11):35-46. [32] HUANG W, FAN Z C, SHEN P L, et al. Experimental and numerical study on the compressive behavior of micro-expansive ultra-high-performance concrete-filled steel tube columns[J/OL].Construction and Building Materials, 2020,254[2020-04-30].https://doi.org/10.1016/j.conbuildmat.2020.119150. [33] HAN L H, YAO G H, ZHONG T. Performance of concrete-filled thin-walled steel tubes under pure torsion[J]. Thin-Walled Structures, 2007, 45(1): 24-36. [34] TAN Q, GARDNER L, HAN L H, et al. Fire performance of steel reinforced concrete-filled stainless steel tubular (CFSST) columns with square cross-sections[J/OL]. Thin-Walled Structures, 2019,143[2019-05-26].https://doi.org/10.1016/j.tws.2019.106197. [35] GARDNER L, NETHERCOT D A. Numerical modeling of stainless steel structural components: a consistent approach[J]. Journal of Structural Engineering, 2004,130: 1586-1601.
点击查看大图
计量
- 文章访问数: 194
- HTML全文浏览量: 12
- PDF下载量: 9
- 被引次数: 0