Experimental Study on Strength and Dry-Wet Cycle Characteristics of Coastally Soft Soil in South China Cemented by Sand and Cement
-
摘要: 为探索砂粒对水泥固化华南滨海软土强度和干湿循环特性的影响规律,制备了一系列不同掺砂量和掺砂粒径的水泥固化华南滨海软土试样,分别进行无侧限抗压强度试验和海水及淡水条件下的干湿循环试验,同时对加载完毕的试样进行扫描电镜(SEM)测试和X射线衍射(XRD)试验。试验结果表明:掺砂水泥土试样的第7,14,28天无侧限抗压强度随掺砂量的提高而增大,其第28天强度随掺砂粒径的减小而增大;掺砂水泥土试样经历两轮干湿循环后的强度损失率最大达61%,干湿循环导致的强度劣化特性随砂粒径的减小和掺砂量的增大而得到更好的改善,并且,掺砂水泥土试样在淡水条件下的抗干湿循环能力明显优于海水条件。SEM和XRD的测试结果表明:掺砂水泥固化华南滨海软土的作用主要表现在:1)模量替换作用(高模量的砂粒替换小模量的软土);2)砂粒-水泥土界面胶结作用;3)裂纹扩展阻隔作用。Abstract: To study the influence of sand on the strength and dry-wet cycle characteristics of cementedly coastal soft clay in South China, a series of cementedly coastal soft clay samples in South China with different contents and sizes of sand were prepared, and unconfined compression strength tests, dry-wet cycle tests, scanning electron microscopy tests and X-Ray diffraction tests were conducted in seawater and fresh water. The test results indicated that the unconfined compression strength of sand-mixed clay-cemented samples cured for 7, 14, and 28 days increased with the increase of the sand content, and the strength cured for 28 days increased with the decrease of the size of sand particles; the maximum loss ratio of mass for sand-mixed clay-cemented samples was up to 61%. The properties of strength deterioration subjected to dry-wet cycles improved with the increase of the sand content and the decrease of the size of sand particles. Moreover, the resistant capability for dry-wet cycling of samples in the fresh water was obviously better than that in the seawater. The results by SEM and XRD tests showed that the reinforced mechanisms of sand-mixed cemented soft clay in South China mainly reflected the following:1)the modulus replacement effect (replacement of low modulus soft clay with the high modulus sand);2)the interfacial effect between sand and clay-cemented matrixes;and 3) the blocking and isolating effect for crack.
-
[1] 张庆华,孙银磊,汤连生,等.南沙淤泥质土微观结构及力学特征的试验研究[J].工业建筑,2021,51(1):110-117. [2] 林本海,杨树庄,朱伯善,等.广东省地质构造与岩土工程基本特征[J].岩石力学与工程学报,2006,25(增刊2):3337-3346. [3] 陈晓平,黄国怡,梁志松.珠江三角洲软土特性研究[J].岩石力学与工程学报,2003,22(1):137-137. [4] ZHOU H Z, ZHENG G, YU X X, et al. Bearing capacity and failure mechanism of ground improved by deep mixed columns[J]. Journal of Zhejiang University:Science A (Applied Physics & Engineering), 2018, 19(4):266-276. [5] 徐超,董天林,叶观宝.水泥土搅拌桩法在连云港海相软土地基中的应用[J].岩土力学,2006,27(3):495-498. [6] 颜恩锋,孙友宏,许振华,等.深层水泥土搅拌桩在基坑支护中的应用[J].岩土力学,2003,24(增刊1):90-93. [7] 万志辉,戴国亮,龚维明,等.海水环境下钙质砂水泥土加固体的微观侵蚀机制试验研究[J].岩土力学, 2021, 42(7):1871-1882. [8] MITCHELL J K, EL JACK S A. The fabric of soil:cement and its formation[J]. Clays and Clay Minerals, 1966, 14(1):297-305. [9] 梁仁旺,张明,白晓红.水泥土的力学性能试验研究[J].岩土力学,2001,22(2):211-213. [10] 杜娟,刘冰洋,申彤彤,等.有机质浸染砂水泥土的力学特性及本构关系[J].农业工程学报,2020,36(2):140-147. [11] 储诚富,邵俐,刘松玉,等.有机质含量对水泥土强度影响的室内定量研究[J].岩土力学,2006,27(9):1613-1616. [12] 李平日,黄镇国,张仲英,等.珠江三角洲的第四纪地层[J].地理科学,1984, 4(2):133-142. [13] SUBRAMANIAN S, KHAN Q, KU T. Effect of sand on the stiffness characteristics of cement-stabilized clay[J/OL]. Construction and Building Materials, 2020, 264[2022-07-20]. https://doi.org/10.1016/j.conbuildmat.2020.120192Get rights and content. [14] XU M, LIU L, DENG Y, et al. Influence of sand incorporation on unconfined compression strength of cement-based stabilized soft clay[J]. Soils and Foundations, 2021, 61(1):1132-1141. [15] CHIAN S C, CHIM Y Q, WONG J W. Influence of sand impurities in cement-treated clays[J]. Géotechnique, 2016, 67(1):1-11. [16] 王海龙,申向东,王萧萧,等.水泥砂浆复合土力学性能及微观结构的试验研究[J].岩石力学与工程学报,2012, 31(增刊1):3264-3269. [17] 刘鑫,范晓秋,洪宝宁.水泥砂浆固化土三轴试验研究[J].岩土力学,2011, 32(6):1676-1682. [18] 范晓秋,洪宝宁,胡昕,等.水泥砂浆固化土物理力学特性试验研究[J].岩土工程学报, 2008,30(4):605-610. [19] DU J, LIU B, WANG Z, et al. Dynamic behavior of cement-stabilized organic-matter-disseminated sand under cyclic triaxial condition[J/OL]. Soil Dynamics and Earthquake Engineering, 2021, 147[2022-07-20]. https://doi.org/10.1016/j.soildyn.2021.106777. [20] CHANDU A S, RAO G. Strength and durability characteristics of red soil stabilized with foundry sand and cement[J]. Arabian Journal for Science and Engineering, 2021, 46(5):5171-5178. [21] 中华人民共和国住房和城乡建设部.建筑地基基础设计规范:GB 50007-2011[S]. 北京:中国建筑工业出版社, 2011. [22] 潘林有.温州软土水泥土强度特性规律的室内试验研究[J].岩石力学与工程学报,2003,22(5):863-863. [23] 梁仕华,曾伟华.干湿循环条件下水泥粉煤灰固化南沙淤泥土试验研究[J].工业建筑,2018,48(7):83-86,43. [24] 中华人民共和国住房和城乡建设部.土工试验方法标准:GB/T 50123-2019[S].北京:中国建筑工业出版社, 2019. [25] ZHAO X K, DONG Q, CHEN X Q, et al. Meso-cracking characteristics of rubberized cement-stabilized aggregate by discrete element method[J/OL]. Journal of Cleaner Production, 2021, 316[2022-07-20]. https://doi.org/10.1016/j.jclepro.2021.128374. [26] CRISTELO N, CUNHA V, ANTÓNIO T, et al. Influence of fibre reinforcement on the post-cracking behavior of a cement-stabilized sandy-clay subjected to indirect tensile stress[J]. Construction and Building Materials, 2017, 138:163-173. [27] XING H, YANG X, CHAO X, et al. Strength characteristics and mechanisms of salt-rich soil-cement[J]. Engineering Geology, 2009, 103:33-38. [28] BALONIS M, LOTHENBACH B, SAOUT G L, et al. Impact of chloride on the mineralogy of hydrated Portland cement systems[J]. Cement & Concrete Research, 2010, 40(7):1009-1022.
点击查看大图
计量
- 文章访问数: 42
- HTML全文浏览量: 5
- PDF下载量: 0
- 被引次数: 0