Analysis on Construction Responses of Rock Around Parallel Subway Tunnels in Inclined Stratification Rocks
-
摘要: 层理构造和隧道间距是相邻隧道围岩掘进卸荷响应敏感性因素,极易诱发围岩变形失稳及地表塌陷。以倾斜层理岩体中在建分离式地铁隧道为背景,将地层倾角作为研究变量,采用FLAC3D有限元软件对隧道围岩的施工响应规律进行研究,并与施工监测数据进行对比验证。结果表明:随着地层倾角的增大,隧道围岩非对称变形的显著性先增大后减小,而地表竖向沉降槽则由单峰V形逐渐向双锋W形转变并趋于显著,沉降槽宽度系数也随之先减小后增大。0.75倍隧道直径范围内围岩应力释放特征显著,于地层倾角为30°时达到峰值,并随径向深度的增大呈非线性减弱。层理两侧围岩应力场非连续性分布的特征,随倾角的减小趋于显著。此外,层理两侧岩体在结构面与隧道边墙轮廓相交位置易发生共轭剪切破坏,应在施工期间进行局部加固。Abstract: Both bedding structure of rock and tunnel clearance are sensitive factors to the response of surrounding rock during tunnelling of adjacent tunnels, which easily cause deformation instability of surrounding rock and ground subsidence. Taking dip angles as the research variable, the construction response laws of the rock around tunnels were studied by the finite element software FLAC3D against the background for separate subway tunnels under construction in inclined stratification rocks, which was verified by comparison with the construction monitoring data. The results indicated that the conspicuousness of asymmetric deformation for rock around the tunnel increased first and decreased then with the increase of dip angles, while the vertical settlement trough of the ground gradually changed from the unimodal V-type to the bimodal W-type and tended to be obvious, and the width coefficient of the settlement trough decreased first and increase then. The characteristics of stress release of surrounding rock in the range of 0.75 times the diameter of tunnels was obvious and reached the peak value when the dip angle was 30°, but decreased nonlinearly with the increase of the radial depth. The discontinuous distribution characteristics of the stress field in surrounding rock on both sides of the stratification tended to be conspicuouse with the decrease of dip angle. In addition, the rock mass on both sides of the stratification was prone to conjugate shear failure at the intersection of the structural plane and the side wall outlines of tunnels, where might be reinforced locally during construction.
-
Key words:
- subway /
- construction response /
- numerical calculation /
- inclined stratification /
- adjacent tunnel
-
[1] 扈萍,马梁,李萌,等.小净距隧道后行洞掘进对先行洞变形的影响[J].济南大学学报(自然科学版), 2022(3):1-6. [2] 赵斌,敖芃,李文涛.不同埋深下小净距隧道最优净距的探讨[J].铁道建筑,2013, 474(8):68-71. [3] 陈锐,陈高生,杨静,等.层理岩体小净距地铁隧道暗挖施工响应数值分析[J].现代隧道技术,2021,58(增刊1):232-239. [4] 赵景彭.地层倾角对层状岩体大断面隧道稳定性研究[J].铁道建筑,2011,451(9):58-61. [5] 段隆臣,闫丰,蒲有林,等.考虑层理的六盘山隧道围岩稳定性研究[J].铁道建筑,2013,474(8):59-61. [6] 何长江,冯君,江南,等.层理特性对顺层隧道破坏模式及稳定影响分析[J].地下空间与工程学报,2020,16(2):599-607. [7] 钟志彬,邓荣贵,孙怡,等.隧道近距大层理硬脆性围岩破裂机理[J].中国公路学报, 2018, 31(5):106-116. [8] LIN Q, CAO P, LIU Y, et al. Mechanical behavior of a jointed rock mass with a circular hole under compression-shear loading:experimental and numerical studies[J/OL]. Theoretical and Applied Fracture Mechanics, 2021, 114[2022-07-17]. https://doi.org/10.1016/j.tafmec.2021.102998Get rights and content. [9] HUANG F, WU C Z, NI P P, et al. Experimental analysis of progressive failure behavior of rock tunnel with a fault zone using non-contact DIC technique[J/OL]. International Journal of Rock Mechanics and Mining Sciences, 2020, 132[2022-07-17]. https://doi.org/10.1016/j.ijrmms.2020.104355. [10] 张志明,张宇,戴勇,等.层理裂隙密集发育岩体隧道掘进断面成形特征统计分析[J].铁道建筑技术,2019(6):12-16. [11] AKSOY C O, OĞUL K, TOPAL I, et al. Reducing deformation effect of tunnel with non-deformable support system by jointed rock mass model[J]. Tunnelling and underground space technology, 2014, 40:218-227. [12] 杨忠民,高永涛,吴顺川,等.层理岩体中纵向间距对连拱隧道稳定性的影响[J].中国公路学报,2018,31(10):167-176. [13] 杨忠民,张玉芳,李健,等.软弱围岩层理性质对隧道塌方范围影响研究[J].中国安全生产科学技术,2020,16(12):143-149. [14] KHAN I A, VENKATESH K, SRIVASTAVA R K. Elasto-plastic finite element analysis of twin tunnels:A comparison of excavation in intact and jointed rock mass[J]. Materials Today:Proceedings, 2021(47):6728-6733. [15] 李赤谋,吴忠仕,褚存,等.层状层理对软岩隧道的变形影响及对策研究[J].中外公路,2020,40(6):219-222. [16] 张慧梅,陈敏,孟祥振,等.不同倾角层理岩体损伤模型及力学特性[J].哈尔滨工程大学学报,2022(6):1-8. [17] KUMAR A, TIWARI G. Jackknife based generalized resampling reliability approach for rock slopes and tunnels stability analyses with limited data:Theory and applications[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022,14(3):714-730. [18] 李老三.铁路标准断面隧道地层倾角效应研究[J].石家庄铁道大学学报(自然科学版),2021,34(1):63-68,75. [19] 刘学增,刘文艺,索超峰.地层倾角对公路隧道围岩塌落拱影响分析[J].现代隧道技术,2014,51(6):73-77. [20] 王贵君,任杨茹.层理特性对隧道围岩稳定性影响的研究[J].河北工业大学学报,2017,46(1):103-107. [21] 袁铁,李畅,申志军,等.层理对泥岩隧道稳定性影响分析[J].公路,2020,65(2):288-294. [22] 刘邦,朱哲明,周磊,等.贯穿隧道的层理对隧道稳定性的影响[J].煤炭学报,2018,43(5):1296-1304. [23] ZHAO D, HE Q, JI Q, et al. Similar model test of a mudstone-interbedded-sandstone-bedding rock tunnel[J/OL]. Tunnelling and Underground Space Technology, 2023, 140[2023-10-10]. https://doi.org/10.1016/j.tust.2023.105299. [24] 袁冉,熊维林,何毅,等.复合成层地层浅埋隧道掘进地表沉降规律分析[J].西南交通大学学报:2022, 57(5):1063-1069. [25] 邵珠山,赵鑫.基于隧道施工诱发地表沉降随机介质理论预测模型的拓展[J].长安大学学报(自然科学版),2021,41(6):73-81. [26] PECK R B. Deep excavations and tunneling in soft ground[C]//Proc. 7th ICSMFE, 1969. 1969:225-290. [27] ATTEWELL P B, YEATES J, SELBY A R. Soil movements induced by tunnelling and their effects on pipelines and structures[M]. New York:Chapman and Hall Other Phys,1986. [28] 韩煊,李宁, STANDING J R. Peck公式在我国隧道施工地面变形预测中的适用性分析[J].岩土力学,2007(1):23-28,35. [29] 马可栓.盾构施工引起地基移动与近邻建筑保护研究[D].武汉:华中科技大学, 2008.
点击查看大图
计量
- 文章访问数: 108
- HTML全文浏览量: 20
- PDF下载量: 1
- 被引次数: 0