Analysis on the Vertical Bearing Capacity of Anchorage Foundations with Wellhead Suction Anchors Based on CEL Method
-
摘要: 我国第二轮天然气水合物试采试验首次运用了井口吸力锚基础。针对井口吸力锚基础,采用有限元法开展竖向荷载作用下受力机理的研究。通过建立的基础三维模型,采用耦合欧拉-拉格朗日方法模拟了井口吸力锚基础竖向大变形的过程。经与不同承载力计算理论的对比,验证了耦合欧拉-拉格朗日方法分析井口吸力锚极限承载力的有效性。对比分析传统吸力锚和井口吸力锚的竖向位移-荷载曲线特征,发现井口吸力锚内部土塞受侧壁约束较大,其竖向极限承载力较高。建立的耦合欧拉-拉格朗日模型为井口吸力锚基础的优化设计提供有益的参考。
-
关键词:
- 井口吸力锚 /
- 竖向承载力 /
- 耦合欧拉-拉格朗日分析法 /
- 大变形模拟 /
- 土塞
Abstract: The wellhead suction anchor has been first used in the second round of trial production tests for natural gas hydrates in China. Be directed against anchorage foundations with wellheed suction anchors, the mechanism of the foundation under vertical loads was studied. The three-dimensional model of the foundation was constructed by finite element software, and the coupled Euler-Lagrangian (CEL) method was used to simulate the vertical large-deformation process of the foundation. The validity of the CEL method for analyzing the ultimate bearing capacity of the wellhead suction anchor was verified by comparing the numerical analysis results with the theoretical calculation results. By comparing between the characteristics of vertical displacement-load curves of traditional suction anchors and wellhead suction anchors, it was found that the side wall serionsly confined the soil plug inside wellhead suction anchors, and its vertical ultimate bearing capacity was higher. The model coupled the Euler-Lagrangian method provided reference to the optimal design of anchorage foundations with wellhead suction anchors. -
[1] 吴时国, 王吉亮. 南海神狐海域天然气水合物试采成功后的思考[J]. 科学通报, 2018, 63(1): 2-8. [2] 叶建良, 秦绪文, 谢文卫, 等. 中国南海天然气水合物第二次试采主要进展[J]. 中国地质, 2020, 47(3): 557-568. [3] LI B, KOU B B, LI B, et al. Application of wellhead suction anchor technology in the second production test of natural gas hydrates in the South China Sea [J]. China Geology, 2022, 5(2): 293-299. [4] 钻探工程编辑部. 深海井口吸力锚[J]. 钻探工程, 2022, 49(1): 161. [5] 秦源康, 刘康, 陈国明, 等. 海洋水合物地层导管吸力锚贯入安装负压窗口分析[J]. 石油钻采工艺, 2021, 43(6): 737-743. [6] 刘书杰, 黄熠, 刘和兴, 等. 深水吸力桩建井过程及承载力特性的试验研究[J]. 石油机械, 2022, 50(3): 32-41. [7] GOURVENEC S, BARNET S. Undrained failure envelope for skirted foundations under general loading [J]. Geotechnique, 2011, 61(3): 263-270. [8] 武科, 栾茂田, 范庆来, 等. 倾斜荷载作用下桶形基础承载力特性研究[J]. 岩土力学, 2009, 30(4): 1095-1101. [9] 张宇, 王梅, 楼志刚. 竖向载荷作用下桶形基础与土相互作用机理研究[J]. 土木工程学报, 2005(2): 97-101. [10] 李大勇, 黄婷, 翟汉波. 竖向荷载作用下砂土中裙式吸力基础承载特性[J]. 四川大学学报(工程科学版), 2015, 47(5): 10-16. [11] 张金来, 鲁晓兵, 王淑云, 等. 桶形基础极限承载力特性研究[J]. 岩石力学与工程学报, 2005(7): 1169-1172. [12] 詹云刚. 水平-竖向-扭转荷载下吸力沉箱基础承载特性数值研究[J]. 工业建筑, 2010, 40(10): 76-81. [13] 闫澍旺, 霍知亮, 孙立强,等. 海上风电机组筒型基础工作及承载特性研究[J]. 岩土力学, 2013, 34(7): 2036-2042. [14] 郭睿. 含吸力锚井口装置的力学行为分析[D]. 北京:中国石油大学(北京), 2019. [15] American Petroleum Institute (API). Geotechnical and Foundation Design Considerations:ANSI/API Recommended Practice 2GEO [S]. Washington D. C.: American Petroleum Institute, 2014. [16] KARLSRUD K, CLAUSEN C, AAS P M. Bearing capacity of driven piles in clay, the NGI approach [C]//Proceedings of International Symposium on Frontiers in Offshore Geotechnics. 2005: 775-782. [17] CLAUSEN C, AAS P M, KARLSRUD K. Bearing capacity of driven piles in sand, the NGI approach [C]//Proceedings of International Symposium on Frontiers in Offshore Geotechnics. 2005: 574-580. [18] JARDINE R, CHOW F, OVERY R, et al. ICP Design Methods for Driven Piles in Sands and Clays [M]. London: Thomas Telford, 2005. [19] LEHANE B M, LI Y N, WILLIAMS R. Shaft capacity of displacement piles in clay using the cone penetration test [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(2): 253-266. [20] 居俊, 杜广印. 基于孔压静力触探测试的刚性桩承载力非线性计算方法[J]. 工业建筑, 2018, 48(5):122-126. [21] 王磊, 俞峰, 王子郡. 黏性土中钢管桩承载力的静力触探设计方法[J]. 工业建筑, 2021, 51(10): 163-169. [22] LI Y L, HU G W, WU N Y, et al. Undrained shear strength evaluation for hydrate-bearing sediment overlying strata in the Shenhu area, northern South China Sea [J]. Acta Oceanologica Sinica, 2019, 38(3): 114-123. [23] 刘永刚. 海上风力发电复合筒型基础承载特性研究[D]. 天津:天津大学, 2014.
点击查看大图
计量
- 文章访问数: 191
- HTML全文浏览量: 16
- PDF下载量: 3
- 被引次数: 0