Improvement Effects and Mechanisms of Steel Slag by Binary Microorganisms
-
摘要: 为有效改善钢渣的安定性,推动钢渣资源化利用率,对微生物改性前、后钢渣的强度、微观结构和安定性变化开展了研究。结果表明:1)原钢渣抗压强度为1.1 MPa,加入酵母菌、巴氏菌和两者混合的二元菌改性后钢渣抗压强度分别为1.2,3.1,4.5 MPa;二元微生物改性后钢渣安定性最好,其中游离氧化钙(f-CaO)的含量为2.86%,符合GB/T 20491—2017《用于水泥和混凝土中的钢渣粉》小于3%的要求,其他指标均未达到要求。2)加入酵母菌的二元微生物在有氧或无氧的条件下都能产生CO2,在碱性环境下溶于水产生CO2-3,弥补了一元巴氏菌少氧条件下矿化能力不足的缺陷,因此二元微生物改性后钢渣中产生了更尖锐的羰基(C=O)吸收谱带和更大面积的水化硅酸钙(C-S-H)凝胶特征峰,且其中的CaCO3晶体与C-S-H凝胶胶结体在钢渣表面形成了紧密的覆盖层。Abstract: To effectively improve the stability of steel slag and promote the utilization of steel slag resources, the changes in strength, microstructure and stability before and after microbial improved steel slag were studied. The results showed that: 1) when compressive strength of original steel slag was 1.1 MPa, and the compressive strength of improved steel slag mixed with saccharomycetes, pasteurella or the mixed bacteria of the above two was 1.2 MPa, 3.1 MPa and 4.5 MPa respectively. After improvement with the mixture of the two microbes, the steel slag was of the best stability in them, and the f-CaO content was 2.86%, which met the requirements not more than 3% of GB/T 20491-2017 Steel Slag Powder Used for Cement and Concrete, but other technical indexes didn’t meet the requirments of the specification. 2) The addition of the binary microorganisms could produce CO2 either in aerobic or anaerobic conditions, and CO2 dissolved in water in an alkaline environment would produce CO2-3, which made up the lack of the mineralization capacity in the condition of less oxygen of mono-bacteria, so the steel slag modified with binary microorganisms would produce a sharper C=O absorption band and a larger area of characteristic peaks of C-S-H gel, and the CaCO3 crystals and the C-S-H gel bodies closely coverd the surface of steel slag.
-
Key words:
- steel slag /
- binary microorganism /
- improvement effect /
- mechanism
-
[1] 庞才良, 杨雪晴, 宋杰光,等.钢渣综合利用的研究现状及发展趋势[J].砖瓦,2020(3):77-80. [2] 王淑娟.钢渣的利用现状及发展趋势分析[J].黑龙江科学,2019,10(2):160-161. [3] 吴跃东,彭犇,吴龙,等.国内外钢渣处理与资源化利用技术发展现状综述[J].环境工程,2021,39(1):161-165. [4] 朱光源.钢渣的膨胀性抑制方法及其路基填料路用性能的研究[D].南京:南京林业大学,2014:74. [5] CHEN Z, XIE J, XIAO Y, et al. Characteristics of bonding behavior between basic oxygen furnace slag and asphalt binder[J]. Const Build Mater, 2014,64:60-66. [6] 张丰,莫立武,邓敏,等.碳化对钢渣-水泥-CaO-MgO砂浆强度和微观结构的影响[J].建筑材料学报,2017,20(6):854-861. [7] 霍彬彬,李保亮, 陈春,等.冰乙酸干法化学改性钢渣粉机理及其性能[J].硅酸盐学报,2021,49(5):948-954. [8] ATIS C D, BILIM C, CELIK O, et al. Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar[J]. Const Build Mater, 2009,23(1):548-555. [9] 曾路, 余意恒, 任毅,等.碱激发钢渣-矿渣加气混凝土的制备研究[J].建筑材料学报,2019,22(2):206-213. [10] 钱春香,张霄,伊海赫.微生物提升钢渣安定性和强度的作用及机理[J].硅酸盐通报,2020,39(8):2363-2371. [11] MARTIN D, DODDS K, NGWENYA B T, et al. Inhibition of Sporosarcina pasteurii under Anoxic Conditions:Implications for Subsurface Carbonate Precipitation and Remediation via Ureolysis[J]. Environ Sci Technol, 2012,46(15):8351-8355. [12] STOCKS-FISCHER S, GALINAT J K, BANG S S. Microbiological precipitation of CaCO3[J]. Soil Biol Biochem, 1999, 31(11):1563-1571. [13] PEÑA A, SÁNCHEZ N S, ÁLVAREZ H,et al. Effects of high medium pH on growth, metabolism and transport in Saccharomyces cerevisiae[J]. FEMS Yeast Res. 2015,15(2). DOI: 10.1093/femsyr/fou005. [14] ZHANG J, SU P, LI Y, et al. Environmental investigation of bio-modification of steel slag through microbially induced carbonate precipitation[J]. 环境科学学报(英文版), 2021(3):282-292. [15] 王毓.钢渣活性激发及其在水泥基材料中的应用研究[D].淮南:安徽理工大学,2018:79. [16] 王雪, 王全, 张滨,等.钢渣作为钾盐矿充填料胶结剂的改性机理[J].工程科学学报,2018,40(10):1177-1186. [17] 荣辉, 魏冠奇, 张磊,等.微生物胶凝材料改性垃圾焚烧飞灰效果及机制[J].材料导报,2019,33(22):3757-3761. [18] 房延凤.钢渣中碱性矿物碳酸化及产物衍变规律研究[D].大连:大连理工大学,2017:160. [19] 刘雨.微生物固碳钢渣建材制品矿化胶凝机制与调控技术基础研究[D].南京:东南大学,2018:116.
点击查看大图
计量
- 文章访问数: 132
- HTML全文浏览量: 14
- PDF下载量: 1
- 被引次数: 0