Anti-Seismic Performance of Composite Shear Walls of Concrete Filled Steel Tube Reinforced with Corrugated Steel Plates
-
摘要: 波形钢板加强的钢管混凝土组合剪力墙是一种新型的结构抗侧体系,由于采用了"承重抗侧分离"的设计,材料性能发挥充分,组合效应明显,可用于加强钢管混凝土结构的抗侧刚度,提升其抗震性能。为研究该种组合剪力墙的抗震性能,首先对照试验现象,标定有限元数值模拟参数;然后基于3组共12片试件的有限元模拟计算结果,分析了组合剪力墙在多级水平往复荷载作用下的弹塑性受力及变形发展规律、破坏模式、滞回特征、耗能能力等抗震性能参数;最后研究了不同轴压比、剪跨比、波形钢板厚度对组合剪力墙抗震性能的影响。研究结果表明:组合剪力墙的抗侧力学行为具有明显的两阶段特征,其滞回曲线饱满,强度退化慢,耗能能力好,极限位移角及位移延性均很高;提高轴压比有利于提高极限承载力,但会导致第二阶段承载力的快速下降;剪跨比主要影响组合剪力墙的破坏模式;波形钢板相对高厚比的合理取值范围应在500~800之间。Abstract: The composite shear wall of concrete filled steel tube (CFST) reinforced with corrugated steel plates is a new structural lateral force resistance system. It adopts a design featuring separate load-bearing and lateral force resistance and fully exerts the performance of materials, with a remarkable composite effect. Therefore, the composite shear wall can be used to strengthen the lateral force resistance stiffness of reinforced CFST structures and improve the anti-seismic performance of the structures. In order to study the anti-seismic performance of the composite shear wall, finite element (FE) numerical simulation parameters were first calibrated according to experimental phenomena. Then, in view of the FE simulation results of 12 specimens in three groups, anti-seismic performance parameters such as elastic-plastic force and deformation laws, failure modes, hysteresis characteristics, and energy dissipation capacity were studied when the composite shear wall was subjected to multilevel and horizontal reciprocating loads. Finally, the effect of different axial compression ratios, shear-to-span ratios, and corrugated steel plate thicknesses on the anti-seismic performance of the composite shear wall was analyzed. The results show that the lateral mechanical behavior of the composite shear wall shows a distinct two-stage characteristic. Specifically, it has a full hysteretic curve, slow strength degradation, positive energy dissipation capacity, and high ultimate displacement angle and displacement ductility. In addition, it is found that an increase in axial compression ratio can improve the ultimate bearing capacity, but this will lead to a rapid decrease in the bearing capacity in the second phase. Furthermore, the shear-to-span ratio mainly affects the failure mode of the composite shear wall, and the reasonable height-to-thickness ratio of the corrugated steel plate should vary from 500 to 800.
-
[1] 侯蕾, 孙彤, 郝际平, 等. 十字加劲肋钢板剪力墙低周反复荷载的试验[J]. 钢结构, 2006,21(2):12-16. [2] 郭彦林, 董全利, 周明. 防屈曲钢板剪力墙滞回性能理论与试验研究[J]. 建筑结构学报, 2009, 30(1):31-39,47. [3] VALIZADEH H, VELADI H, AZAR B F, et al. The cyclic behavior of butterfly-shaped link steel plate shear walls with and without Buckling-restrainers[J]. Structures, 2020, 27:607-625. [4] 聂建国, 卜凡民, 樊健生. 低剪跨比双钢板-混凝土组合剪力墙抗震性能试验研究[J]. 建筑结构学报, 2011,32(11):74-81. [5] 纪晓东, 蒋飞明, 钱稼茹, 等. 钢管-双层钢板-混凝土组合剪力墙抗震性能试验研究[J]. 建筑结构学报, 2013,34(6):75-83. [6] 武晓东, 童乐为. 带方钢管混凝土端柱隔板连接双钢板-混凝土组合剪力墙抗震性能试验研究[J]. 建筑结构学报, 2019,40(12):41-50. [7] ZHANG X M, YIN Q, CHEN Z H. Experimental seismic behavior of innovative composite shear walls[J]. Journal of Constructional Steel Research, 2016, 116(1):218-232. [8] 陈志华, 姜玉挺, 张晓萌, 等. 钢管束组合剪力墙变形性能研究及有限元分析[J]. 振动与冲击, 2017,36(19):36-45. [9] 郭彦林, 朱靖申. 剪力墙的型式、设计理论研究进展[J]. 工程力学, 2020,37(6):19-33. [10] 王威,张龙旭,苏三庆,等. 波形钢板剪力墙抗震性能试验研究[J]. 建筑结构学报, 2018,39(5):36-44. [11] CAO Q, HUANG J. Experimental study and numerical simulation of corrugated steel plate shear walls subjected to cyclic loads[J]. Thin-Walled Structures, 2018, 127:306-317. [12] 陈宝春, 高婧. 波形钢腹板钢管混凝土梁受弯试验研究[J]. 建筑结构学报, 2008(1):75-82. [13] 王威, 高敬宇, 任英子, 等. 方钢管柱-波形钢板剪力墙抗侧力性能有限元分析[J]. 工业建筑, 2018,48(10):152-158. [14] 李子昂,许立言,陶慕轩.竖向承重与水平抗侧相分离的组合框架-剪力墙结构体系抗震性能研究[J].建筑结构学报,2021,42(2):15-26.DOI: 10.14006/j.jzjgxb.2020.c139. [15] 沈海英,吴若旻,王海山,等.波形参数对波形钢板剪力墙抗剪承载性能的影响研究[J/OL].工业建筑,2022.http://kns.cnki.net/kcms/detail/11.2068.TU.20220617.1005.002.html. [16] 余玉洁,聂熙哲,赵凤涛, 等.钢管混凝土边柱-横肋波纹钢板异形剪力墙抗震性能试验研究[J/OL].建筑结构学报,2022.DOI: 10.14006/j.jzjgxb.2021.0508. [17] 中国工程建设标准化协会. 波形钢板组合结构技术规程:T/CECS 624:2019[S]. 北京:中国建筑工业出版社, 2019. [18] 张龙旭. 波形钢板剪力墙及其组合墙抗震性能与抗剪承载力研究[D].西安:西安建筑科技大学,2018. [19] 秦浩, 赵宪忠. ABAQUS混凝土损伤因子取值方法研究[J]. 结构工程师, 2013, 29(6):27-32. [20] 王威,刘格炜,苏三庆,等.波形钢板剪力墙及组合墙抗剪承载力研究[J].工程力学,2019,36(7):197-206,226. [21] 王威,丁小波,苏三庆,等.波形钢板剪力墙拟静力试验及数值模拟[J].应用力学学报,2021,38(5):1782-1791.
点击查看大图
计量
- 文章访问数: 64
- HTML全文浏览量: 13
- PDF下载量: 0
- 被引次数: 0