Experimental Research on Bending Fatigue Performance of UHPC-T Beams and Evaluation of Their Residual Bearing Capacity
-
摘要: 为了研究配筋率和预应力筋对UHPC-T梁抗弯疲劳性能及剩余承载能力的影响,以常规T梁为研究对象,设计并制作了6根UHPC-T梁与2根普通混凝土T梁,其中4根T梁进行三等分点抗弯疲劳试验,余下4根T梁进行三等分点抗弯静载试验,着重研究配筋率和预应力筋等因素对其挠度(残余挠度)、应变(残余应变)以及剩余承载能力等抗弯疲劳性能的影响。结果表明:增大配筋率和施加预应力对T梁混凝土疲劳应变影响较小,增大配筋率可有效降低钢筋疲劳应变,而施加预应力对钢筋疲劳应变影响不大;配筋率为0.372%和1.14%的UHPC-T梁及预应力UHPC-T梁疲劳试验后的剩余承载能力比相应的静载极限承载力分别下降了14.0%、6.7%和16.7 %,表明疲劳荷载作用降低了其承载能力;当材料性能改善和配筋率增大时,UHPC-T梁的剩余承载力逐渐上升,相应的挠度及残余挠度降低;疲劳荷载作用下,施加预应力提升了T梁的剩余承载能力,减小了最大裂缝宽度。Abstract: To study the influence of reinforcement ratio and prestressing tendon on the bending fatigue performance and residual bearing capacity of UHPC-T beams, six UHPC-T beams and two concrete T beams were designed and constructed. Four of the beams were subjected to three-point bending fatigue tests, while the other four beams were subjected to three-point bending static load tests, in order to study the influence of the reinforcement ratio and prestressing tendon on the deflection (residual deflection), strain (residual strain), and residual bearing capacity. The results showed that increasing the reinforcement ratio and adding prestressing force had little effect on the concrete strain of the T beams based on a series of fatigue tests. Increasing the reinforcement ratio could reduce the rebar strain, whereas adding the prestressing tendon did not influence the rebar strain. The residual bearing capacity of the UHPC-T beams with 0.372% and 1.14%, and the prestressed UHPC-T beam decrease by 14.0%, 6.7%, and 16.7% compared to the corresponding static ultimate bearing capacity, respectively. It was indicated that the fatigue load decreased the bearing capacity of UHPC-T beams. The residual bearing capacity of UHPC-T beams gradually increased with the increasing of reinforcement ratio or the material performance, and the corresponding deflection and residual deflection decreased. The prestressing force application significantly improved the residual bearing capacity and mitigated the maximum crack width of UHPC-T beams under fatigue loads.
-
[1] 邵旭东,曹君辉.面向未来的高性能桥梁结构研发与应用[J].建筑科学与工程学报, 2017, 34(5):41-58. [2] 邵旭东,樊伟,黄政宇.超高性能混凝土在结构中的应用[J].土木工程学报, 2021, 54(1):1-13. [3] 严国敏.韩国圣水大桥的倒塌[J].国外桥梁, 1996(4):47-50. [4] 刘芳平.疲劳荷载作用后钢筋混凝土梁剩余承载力研究[D].重庆:重庆交通大学, 2016. [5] 张世贵.高强钢筋钢纤维混凝土梁疲劳性能试验研究[D].郑州:郑州大学, 2017. [6] 冯仲仁,吕尔燕,郭蒙蒙.循环荷载作用下钢纤维混凝土梁疲劳试验研究[J].中外公路, 2020, 40(5):191-195. [7] 谢业鹏.钢筋钢纤维混凝土梁弯曲疲劳性能试验研究[D].呼和浩特:内蒙古工业大学, 2013. [8] 高丹盈,张明.疲劳荷载下钢筋钢纤维高强混凝土梁受压边缘累积残余应变计算方法[J].中国公路学报, 2016, 29(3):48-54. [9] 吕尔燕.钢纤维混凝土梁疲劳裂纹扩展试验研究[D].武汉:武汉理工大学, 2019. [10] NIU Y, HUANG H, WEI J, et al. Investigation of fatigue crack propagation behavior in steel fiber-reinforced ultra-high-performance concrete (UHPC) under cyclic flexural loading[J]. Composite Structures, 2022, 282. [11] GERMANO F, TIBERTI G, PLIZZARI G. Post-peak fatigue performance of steel fiber reinforced concrete under flexure[J]. Materials and Structures, 2016, 49(10):4229-4245. [12] PARVEZ A, FOSTER S J. Fatigue behavior of steel-fiber-reinforced concrete beams[J/OL]. Journal of Structural Engineering, 2014, 141(4).https://doi.org/10.1061/(ASCE) ST.1943-541X.0001074. [13] 李书群,姬宏奎,杨松.应力比对钢纤维高强混凝土梁疲劳寿命影响的试验研究[J].水利与建筑工程学报, 2016, 14(4):157-160,167. [14] 周宏宇,袁慧,解咏平,等.钢筋混凝土梁疲劳临界剩余承载性能尺寸效应试验研究[J].应用基础与工程科学学报, 2020, 28(6):1433-1446. [15] 许浩.预应力高性能混凝土梁疲劳性能试验研究[D].石家庄:石家庄铁道大学, 2015. [16] 朱琦,叶力豪,蔡玮,等. UHPC-T梁抗弯性能试验研究与理论计算[J].建筑科学与工程学报, 2023, 40(1):65-74. [17] 覃维祖,曹峰.一种超高性能混凝土:活性粉末混凝土[J].工业建筑, 1999,29(4):18-20. [18] 史金华,史才军,欧阳雪,等.超高性能混凝土受压弹性模量研究进展[J].材料导报, 2021, 35(3):3067-3075. [19] 杜任远,陈宝春,沈秀将.不同方法测试的超高性能混凝土抗拉强度[J].材料导报, 2016, 30(增刊2):483-486,520. [20] 全国钢标准化技术委员会.金属材料拉伸试验第1部分:室温试验方法:GB/T 228.1-2021[S].北京:中国标准出版社,2021.
点击查看大图
计量
- 文章访问数: 101
- HTML全文浏览量: 8
- PDF下载量: 1
- 被引次数: 0