中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊
中国建筑科学领域高质量科技期刊分级目录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可液化场地桥梁桩基震害及抗液化研究进展

吴九江 胡浩东 李艳

吴九江, 胡浩东, 李艳. 可液化场地桥梁桩基震害及抗液化研究进展[J]. 工业建筑, 2023, 53(10): 169-178,118. doi: 10.13204/j.gyjzG22070904
引用本文: 吴九江, 胡浩东, 李艳. 可液化场地桥梁桩基震害及抗液化研究进展[J]. 工业建筑, 2023, 53(10): 169-178,118. doi: 10.13204/j.gyjzG22070904
WU Jiujiang, HU Haodong, LI Yan. Reviews on Seismic Damage of Bridge Pile Foundations in Liquefiable Sites and Research Progress of Anti-Liquefaction Mechanisms[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(10): 169-178,118. doi: 10.13204/j.gyjzG22070904
Citation: WU Jiujiang, HU Haodong, LI Yan. Reviews on Seismic Damage of Bridge Pile Foundations in Liquefiable Sites and Research Progress of Anti-Liquefaction Mechanisms[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(10): 169-178,118. doi: 10.13204/j.gyjzG22070904

可液化场地桥梁桩基震害及抗液化研究进展

doi: 10.13204/j.gyjzG22070904
基金项目: 

国家自然科学基金项目(42007247);四川省自然科学基金项目(2022NSFSC1151);工程材料与结构冲击振动四川省重点实验室开放基金项目。

详细信息
    作者简介:

    吴九江,男,1988年出生,博士,副教授,博士生导师。电子信箱:wujiujiang1988@126.com

Reviews on Seismic Damage of Bridge Pile Foundations in Liquefiable Sites and Research Progress of Anti-Liquefaction Mechanisms

  • 摘要: 1964年以来,世界范围内发生了多次产生大面积液化现象的破坏性地震,如新瀉、阪神、唐山和汶川地震等,地震中可液化场地桩基桥梁震害事例不在少数,造成了很大的经济损失和人员伤亡。在调研国内外大量相关文献的基础上,统计了近年来国内外桥梁基础震害的典型实例,重点总结国内外学者关于桩基抗液化的试验、数值模拟和理论分析方面的研究进展,并进行了相关的总结和分析,以期对桥梁桩基液化的进一步研究提供参考。
  • [1] TAREK A, RICARDO D. Evaluation of pile foundation response to lateral spreading[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(10):1051-1058.
    [2] HAMADA M. Large ground deformations and their effects on life-lines:1964 Niigata earthquake[R]. Case studies of liquefaction and lifelines performance during past-earthquake:Japanese Case Studies. Bufflo:National Center for Earthquake Engineering Research,1992:1-123.
    [3] 王睿, 张建民, 张嘎. 液化地基侧向流动引起的桩基础破坏分析[J]. 岩土力学,2011, 32(增刊1):501-506.
    [4] 刘惠珊. 1995年阪神大地震的液化特点[J]. 工程抗震, 2001, 23(1):22-26.
    [5] 孙利民, 范立础. 阪神地震后日本桥梁抗震设计规范的改订[J]. 同济大学学报, 2001, 29(1):60-64.
    [6] KAWASHIMA K, UNJOH S. The damage of highway bridges in the 1995 Hyogo-Ken Nanbu earthquake and its impact on Japanese seismic design[J]. Journal of Earthquake Engineering, 1997, 1(3):505-541.
    [7] IKUO T. Geotechnical earthquake engineering[M]. Berlin:Springer, 2008.
    [8] ISHIHRA K, ALEX A, IKUO T, Liquefaction-induced ground damage in Dagupan in the July 16, 1990 Luzon earthquake[J]. Soils and Foundations, 1993, 33(1):133-154.
    [9] KAWASHIMA K, UNJOH S, HOSHIKUMA J, et al. Damage of bridges due to the 2010 Maule, Chile, Earthquake[J]. Journal of Earthquake Engineering, 2011, 15(7):1036-1068.
    [10] 李雨润, 张健, 戎贤. 液化土中直斜桩基抗震研究进展与新问题[J]. 地震工程与工程振动, 2018, 38(6):171-181.
    [11] MOHANTY P, BHATTACHARYA S. Case studies of liquefaction-induced damages to two pile-supported river bridges in China[J/OL]. Journal of Performance of Constructed Facilities, 2019, 33(5)[2022-07-09].https://doi.org/10.1061/(ASCE)CF.1943-5509.0001306.
    [12] 张克绪, 谢君斐, 陈国兴. 桩的震害及其破坏机制宏观研究[J]. 世界地震工程, 1991, 11(3):7-20.
    [13] 刘恢先. 唐山大地震震害[M]. 北京:地震出版社, 1985.
    [14] 丁剑霆, 姜淑珍, 包峰. 唐山地震桥梁震害回顾[J]. 世界地震工程, 2006, 22(1):68-71.
    [15] HWANG J H, YANG C W, CHEN C H. Investigations on soil liquefaction during the Chi-Chi earthquake[J]. Soils and Foundations, 2003, 43(6):107-123.
    [16] 日本建築学会. 1999年台湾集集地震第I編調查報告[R].東京:日本建築学会, 2000.
    [17] 袁晓铭, 曹振中, 孙锐,等. 汶川8.0级地震液化特征初步研究[J]. 岩石力学与工程学报, 2009, 28(6):1288-1296.
    [18] 曹振中, 袁晓铭, 陈龙伟,等. 汶川大地震液化宏观现象概述[J]. 岩土工程学报, 2010, 32(4):645-650.
    [19] 袁晓铭, 曹振中. 汶川大地震液化的特点及带来的新问题[J]. 世界地震工程, 2011, 27(1):1-8.
    [20] 曹振中, 侯龙清, 袁晓铭,等. 汶川8.0级地震液化震害及特征[J]. 岩土力学, 2010, 31(11):3549-3555.
    [21] 李鸿晶, 陆鸣, 温增平,等. 汶川地震桥梁震害的特征[J]. 南京工业大学学报(自然科学版), 2009, 31(1):24-29.
    [22] 王东升, 郭迅, 孙治国,等. 汶川大地震公路桥梁震害初步调查[J]. 地震工程与工程振动, 2009, 29(3):84-94.
    [23] KAWASHIMA K, TAKAHASHI Y, GE H, et al. Reconnaissance report on damage of bridges in 2008 Wenchuan, China, Earthquake[J]. Journal of Earthquake Engineering, 2009, 13(7):965-996.
    [24] 袁近远,王兰民,汪云龙,等.不同设防水准下场地液化震害风险差异性研究[J].岩石力学与工程学报,2023,42(1):246-260.
    [25] 管仲国,黄勇,张昊宇,等.青海玛多7.4级地震桥梁工程震害特性分析[J].世界地震工程,2021,37(3):38-45.
    [26] 刘惠珊. 桩基震害及原因分析:日本阪神大地震的启示[J]. 工程抗震, 1999(1):37-43.
    [27] 张建民. 水平地基液化后大变形对桩基础的影响[J]. 建筑结构学报, 2001, 22(5):75-77.
    [28] YASUHIRO S, ZHANG J M, TOKIMATSU K. New charts for predicting large residual post-liquefaction ground deformation[J]. Soil Dynamics and Earthquake Engineering. 1998, 17(7):427-438.
    [29] KOBORI T, KOSHIKA N, YAMADA K. Seismic-response-controlled structure with active mass driver system,part 2:verification[J]. Earthquake Engineering & Structural Dynamics, 1991, 20(2):133-149.
    [30] 韩英才, NOVAK M. 水平荷载作用下群桩动力特性的研究[J]. 土木工程学报. 1992, 25(5):24-33.
    [31] 常方强, 贾永刚, 郭秀军,等. 黄河口粉土液化过程的现场振动试验研究[J]. 岩土工程学报, 2009, 31(4):609-616.
    [32] ASHFORD S A, JUIRNARONGRIT T. Response of single piles and pipelines in liquefaction-induced lateral spreads using controlled blasting[J]. Earthquake Engineering and Engineering Vibration, 2002, 1(2):181-193.
    [33] SUGANO T,KOHAMA E. Seismic performance of urban, reclaimed and port areas-full scale experiment at tokachi port by controlled blasting technique[C]//Proceedings of the Japan Earthquake Engineering Symposium.2002:901-906.
    [34] KOHAMA E, SUGANO T. A full-scale test on the dynamic behavior of a steel pile quay wall by controlled blasting [C]//Proceedings of the Japan Earthquake Engineering Symposium.2002:1009-1014.
    [35] FIEGEL G L, KUTTER B L. Liquefaction induced lateral spreading of mildly sloping ground [J/OL]. Journal of Geotechnical Engineering, ASCE, 1994,120(12)[2022-07-09].https://doi.org/10.1061/(ASCE)0733-9410(1994)120:12(2236).
    [36] LIU L, DOBRY R. Effect of liquefaction on lateral response of piles by centrifuge model tests[J]. National Center for Earthquake Engineering Research (NCEER) Bulletin, 19959(1):7-11.
    [37] WILSON D W, BOULANGER R W, KUTTER B L. Observed seismic lateral resistance of liquefying sand[J].Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(10):898-906.
    [38] KUMAR R, SAWAISHI M, HORIKOSHI K, et al. Centrifuge modeling of hybrid foundation to mitigate liquefaction-induced effects on shallow foundation resting on liquefiable ground[J].Soils and Foundations, 2019, 59(6):2083-2098.
    [39] TANG L, MAN X, ZHANG X, et al. Estimation of the critical buckling load of pile foundations during soil liquefaction[J/OL].Soil Dynamics and Earthquake Engineering, 2021, 146[2022-07-09]. https://doi.org/10.1016/j.soildyn.2021.106761.
    [40] 孙锐, 袁晓铭, 王永志,等. NEES系统中振动离心机最新进展及国内振动离心机发展设想[J]. 世界地震工程, 2010, 26(1):31-39.
    [41] 汪明武, TOBITAT, IAI S. 倾斜液化场地桩基地震响应离心机试验研究[J]. 岩石力学与工程学报, 2009, 28(10):2012-2017.
    [42] 苏栋, 李相菘. 可液化土中单桩地震响应的离心机试验研究[J]. 岩土工程学报. 2006, 28(4):423-427.
    [43] 刘星. 可液化地基中群桩基础震动响应基本规律研究[D]. 北京:清华大学, 2018.
    [44] LI Y, KITAZUME M, TAKAHASHI A, et al. Centrifuge study on the effect of the SCP improvement geometry on the mitigation of liquefaction-induced embankment settlement[J/OL]. Soil Dynamics and Earthquake Engineering, 2021, 148[2022-07-09]. https://doi.org/10.1016/j.soildyn.2021.10685.
    [45] 张健, 李雨润, 戎贤, 等. 液化土中斜群桩承台动力响应特性及桩身弯矩分布规律研究[J]. 地震工程与工程振动, 2021, 41(3):235-244.
    [46] HE L C. Liquefaction-induced lateral spreading and its effects on pile foundations[D]. California:University of California, 2005.
    [47] ARULANANDAN, K, R F SCOTT. VELACS:verification of numerical procedures for the analysis of soil liquefaction problems[C]//Conference Proceedings.1993.
    [48] SASAKI Y, TOKIDA K, MARSUMOTO H, et al. Shake table tests on lateral ground flow induced by soil liquefaction[C]//Proceedings of the third Japan-U. S. Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures for Soil Liquefaction. 1991:371-385.
    [49] TOWHATA I, VARGAS-MONGE W, ORENSE R P. Shaking table tests on subgrade reaction of pipe embedded in sandy liquefied subsoil[J].Soil Dynamics and Earthquake Engineering, 1999, 18(5):347-361.
    [50] HAMADA M. Performance of foundations against liquefaction-induced permanent ground displacement[C]//Proceedings of the 12th World Conference on Earthquake Engineering. 2000.
    [51] MOTAMED R, TOWHATA I, HONDA T, et al. Behavior of pile group behind a sheet pile quay wall subjected to liquefaction-induced large ground deformation observed in shaking test in e-defense project[J].Soils and Foundations, 2009, 49(3):459-475.
    [52] MOSS R E S, HONNETTE T R, JACOBS J S. Large-scale liquefaction and post-liquefaction shake table testing[J/OL].Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(12) [2022-07-09]. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002400.
    [53] ORANG M J, BOUSHEHRI R, MOTAMED R, et al. An experimental evaluation of helical piles as a liquefaction-induced building settlement mitigation measure[J/OL]. Soil Dynamics and Earthquake Engineering, 2021, 151[2022-07-09]. https://doi.org/10.1016/j.soildyn.2021.106994.
    [54] BELHASSENA F Z, TANG L, BOURI D E, et al. Estimation of bending moment and pile displacement for soil-pile-quay wall system subjected to liquefaction induced lateral spreading[J/OL]. Soil Dynamics and Earthquake Engineering, 2021, 151[2022-07-09]. https://doi.org/10.1016/j.soildyn.2021.106989.
    [55] HUSSEIN A F, EL NAGGAR M H. Seismic axial behaviour of pile groups in non-liquefiable and liquefiable soils[J/OL]. Soil Dynamics and Earthquake Engineering, 2021, 149[2022-07-09]. https://doi.org/10.1016/j.soildyn.2021.106853.
    [56] 宋波, 刘惠珊. 软土地基震陷的试验研究[J].工程抗震, 1990(1):34-37.
    [57] 刘惠珊, 陈克景. 液化土中的桩基试验[J]. 工程抗震, 1991(2):19-23.
    [58] 武思宇, 宋二祥, 刘华北,等. 刚性桩复合地基的振动台试验研究[J].岩土工程学报, 2005, 38(11):1334-1337.
    [59] 李雨润, 袁晓铭, 曹振中. 液化土中桩基础动力反应试验研究[J]. 地震工程与工程振动, 2006, 26(3):257-259.
    [60] 陈育民, 刘汉龙, 赵楠. 抗液化刚性排水桩振动台试验的数值模拟研究[J]. 土木工程学报, 2010, 43(12):114-119.
    [61] 许成顺, 豆鹏飞, 杜修力. 液化场地-群桩基础-结构体系动力响应分析:大型振动台模型试验研究[J].岩土工程学报, 2019, 41(12):2173-2181.
    [62] 周恩全, 伊思航, 文艳, 等. 可液化倾斜场地中桩基动力响应振动台试验研究[J]. 地震工程学报, 2020, 42(3):732-741.
    [63] 张恒源, 钱德玲, 沈超, 等. 水平和竖向地震作用下液化场地群桩基础动力响应试验研究[J].岩土力学, 2020, 41(3):905-914.
    [64] 庄海洋, 赵畅, 于旭, 等. 液化地基上隔震结构群桩与土动力相互作用振动台模型试验研究[J].岩土工程学报:2022,44(6):979-987.
    [65] 凌贤长, 王东升. 液化场地桩-土-桥梁结构动力相互作用振动台试验研究进展[J].地震工程与工程振动,2002, 22(4):53-59.
    [66] FAMIGLIETTI C M, PREVOST J H. Solution of the slump test using a finite deformation elastoplastic druckerprager model[J].International Journal for Numerical Methods in Engineering, 1994, 37(22):3869-3903.
    [67] WU W H, SMITH H A. Efficient modal analysis for structures with soil-structure interaction[J]. Earthquake Engineering and Structure Dynamic, 1995, 24(3):283-299.
    [68] LU C W, OKA F, ZHANG F. Analysis of soil-pile-structure interaction in a two-layer ground during earthquakes considering liquefaction[J]. International Journal for Numerical and Analytical Methods in Geotechnics, 2008, 32(8):863-895.
    [69] BRADLEY B A, CUBRINOVSKI M,DHAKAL R P, et al. Probabilistic seismic performance and loss assessment of a bridge-foundation-soil system[J]. Soil Dynamics and Earthquake Engineering, 2009, 30(5):395-411.
    [70] TAKAHASHI A, SUGITA H, TANIMOTO S. Forces acting on bridge abutments over liquefied ground[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(3):146-156.
    [71] 黄雨, 八嶋厚, 张锋. 液化场地桩-土-结构动力相互作用的有限元分析[J].岩土工程学报, 2005, 27(6):646-651.
    [72] 陈国兴, 陈继华, 王志华,等. 土-结构-TMD体系振动台模型试验与数值模拟对比研究[J].岩土工程学报, 2003, 25(5):532-537.
    [73] 庄海洋, 陈国兴. 砂土液化大变形本构模型及在ABAQUS软件上的实现[J].世界地震工程, 2011, 27(2):45-50.
    [74] XU L Y, SONG C X, CHEN W Y, et al. Liquefaction-induced settlement of the pile group under vertical and horizontal ground motions[J/OL]. Soil Dynamics and Earthquake Engineering, 2021, 144[2022-07-09]. https://doi.org/10.1016/j.soildyn.2021.106709.
    [75] 冯忠居, 孟莹莹, 董芸秀, 等. 强震作用下液化场地桩-土非线性动力相互作用特性[J].科学技术与工程, 2021, 21(17):7299-7307.
    [76] 苏雷, 唐亮, 凌贤长, 等. 液化侧扩流场地桩基动力反应振动台试验数值模拟[J]. 防灾减灾工程学报, 2019, 39(2):227-235.
    [77] 崔杰, 张征, 唐亮, 等. 液化微倾场地群桩-土动力相互作用p-y曲线特性[J].地震工程与工程振动, 2021, 41(5):154-164.
    [78] 孟畅, 唐亮. 近岸液化场地高桩码头地震易损性分析[J]. 岩土工程学报, 2021, 43(12):2274-2282.
    [79] ALTERMAN Z, KARAL F C. Propagation of elastic waves in layered media by finite difference methods[J]. Bulletin of the Seismological Society of America,1968, 59(3):67-98.
    [80] WANG S T, REESE L C. Designed foundations in liquefied soils[J]. Geotechnical Earthquake Engineering and Soil Dynamics III, ASCE Geotechnical Special Publication,1998, 2(75):1331-1343.
    [81] POURYA E K, KAYNIA A M. Numerical modeling of liquefaction and its impact on anchor piles for floating offshore structures[J/OL]. Soil Dynamics and Earthquake Engineering, 2019, 127[2022-07-09]. https://doi.org/10.1016/j.soildyn.2019.105839.
    [82] 陈育民, 徐鼎平. FLAC/FLAC3D基础与工程实例[M]. 北京:中国水利水电出版社, 2009.
    [83] 孔德森, 李文胜, 常龙龙. 液化场地倾斜桩动力p-y曲线研究地震工程与工程振动, 2019, 39(4):41-56.
    [84] 陈清军, 赵云峰, 王汉东,等. 振动台模型试验中地基土域的数值模拟[J]. 力学季刊, 2002, 23(3):407-411.
    [85] EL-MESTKAWY M. Discrete element simulation for seismically-induced soil liquefaction[D]. New York:The State University of New York, 1998.
    [86] 周健, 白彦峰, 张昭,等. 砂土中群桩室内模型试验及颗粒流模拟研究[J]. 岩土工程学报,2009, 31(8):1275-1280.
    [87] 荚颖, 唐小微, 栾茂田. 砂土液化变形的有限元-无网格耦合方法[J]. 岩土力学,2010, 31(8):2643-2654.
    [88] 黄雨, 郝亮. 液化地基中桩的破坏机理研究进展[J]. 工程地质学报, 2008, 16(2):184-189.
    [89] 黄雨, 郝亮. 基于CFD的地震液化研究新进展[J]. 岩土力学, 2008, 29(8):2231-2251.
    [90] 黄雨,舒翔,叶为民,等.桩基础抗震研究现状综述[J].工业建筑,2002,32(7):50-53.
    [91] 凌贤长, 唐亮. 液化场地桩基侧向响应分析中p-y曲线模型研究进展[J]. 力学进展, 2010, 40(3):250-262.
    [92] MATLOCK H. Correlations for design of laterally loaded piles in soft clay[C]//Proc. of 2nd Annu. Offshore Technol. Conf., OTC 1204, Offshore Technology Conference. 1970:577-607.
    [93] TING J M. Full scale cyclic dynamic lateral pile response[J]. Journal of Geotechnical Engineering, 1987, 113(1):30-45.
    [94] JUIRNARONGRIT T, ASHFORD S A. Soil-pile response to blast-induced lateral spreading. II:Analysis and assessment of the p-y method[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(6):163-172.
    [95] 王建华, 冯士伦. 液化土层中桩基水平承载特性分析[J].岩土力学,2005, 26(10):1597-1601.
    [96] 王建华, 戚春香, 余正春,等. 弱化饱和砂土中桩的p-y曲线与极限抗力研究[J].岩土工程学报, 2008, 30(3):309-315.
    [97] 李雨润, 袁晓铭, 梁艳. 桩-液化土相互作用p-y曲线修正计算方法研究[J]. 岩土工程学报, 2009, 31(4):595-599.
    [98] 唐亮. 液化场地桩-土动力相互作用p-y曲线模型研究[D]. 哈尔滨:哈尔滨工业大学, 2011.
    [99] 徐鹏举. 可液化场地桥梁桩基地震反应分析与简化分析方法研究[D]. 哈尔滨:哈尔滨工业大学, 2011.
    [100] 李帅, 王建华, 冯士伦. 液化土中桩基抗震设计现状[J]. 长安大学学报, 2003, 20(2):1-5.
    [101] 王兰民, 莫庸. 黄土地基震陷和液化时桩基的抗震设计计算方法[C]//纪念汶川地震一周年:地震工程与减轻地震灾害研讨会论文集. 北京:地震出版社, 2009.
    [102] Japan Road Association. Specifications for highway bridges[S]. Tokyo:Japan Road Association, 2002.
    [103] RICARDO D, TAREK A, O'ROURKE T D. Single piles in lateral spreads:field bending moment evaluation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(10):879-889.
    [104] 戴琰, 陈国兴, 王志华. 可液化地基群桩基础地震反应总应力与有效应力分析的比较[J]. 防灾减灾工程学报, 2017, 37(5):795-801.
    [105] 叶海霞, 王康达, 杨万勇, 等. 拟静力法与时程分析法计算液化场地桩基地震响应的差异研究[J].自然灾害学报, 2018, 27(6):166-172.
  • 加载中
计量
  • 文章访问数:  73
  • HTML全文浏览量:  11
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-09
  • 网络出版日期:  2023-12-18

目录

    /

    返回文章
    返回