Response Laws of Piles and Free Field Soil Under Different Proportions of Seismic Waves
-
摘要: 为探讨桩身、自由场土体以及桩土接触面在不同比例地震波作用下的响应规律,利用OpenSees软件建立了桩-土模型,其中桩土间接触采用p-y、q-z、τ-z弹簧单元模拟。分别将50%、75%和100%比例的El Centro波、Kobe波输入到模型中,结果表明:自由场土体和桩身的加速度均有放大,其中地表处和桩头承台的加速度峰值放大倍数范围分别为1.73~2.26和2.63~3.92;随着输入波比例值的增大,地表处土体和桩头承台处的加速度放大倍数逐渐降低;桩头承台最大位移比和桩身最大剪切力比均与地面峰值加速度比近似呈线性关系;在地面下3 m处和桩底处的抗力较大,地表处抗力最小;地表处的土体因塑性变形而产生残余位移,对于不同深度处的土体在地震作用下先发生剪胀后剪缩现象。Abstract: To study response laws of piles, free field soil and pile-soil interfaces under different propertions of seismic waves, the pile-soil model was constructed by the OpenSees software. The contact between pile and soil was simulated by p-y, q-z and τ-z spring elements separately. The waves with proportions of 50%, 75% and 100% of the El Centro wave and Kobe wave were respectively input into the model. The results showed that the accelerations of soil and pile bodies in the free field were amplified, and the amplified ranges of the peak ground acceleration and pile cap were from 1.73 to 2.26 and 2.63 to 3.92 respectively; with the increase of the proportion of input seismic waves, the amplified times of acceleration at the ground and the pile cap decreased gradually; the maximum displacement ratio at pile caps and the maximum shear force ratio of piles were approximately linear with the peak ground acceleration; the resistances of soil at 3 m below the ground or at the pile bottom were larger, and the resistance at the ground was smallest; the residual displacement at the ground was caused by plastic deformation. For the soil at different depths, the phenomenon of shear contraction followed shear dilation occurred in soil at different depths under earthquakes.
-
Key words:
- pile-soil interaction /
- pile response /
- magnification /
- free field /
- soil
-
[1] 刘亚明, 司炳君, 何福. 单桩-土相互作用非线性数值分析模型[J]. 防灾科技学院学报, 2018, 20(2):1-5. [2] MCCLELLAND B, FOCHT J A. Soil modulus for laterally loaded piles [J]. ASCE Soil Mechanics and Foundation Division Journal, 1956, 82(4):1-22. [3] 武成浩, 姚谦峰, 阎红霞,等. 罕遇地震作用下考虑接触效应的高层建筑上部结构-桩-土体相互作用的非线性分析[J]. 岩石力学与工程学报, 2011, 30(增刊1):3224-3233. [4] 李再先, 李小军, 张智. 桩-土-结构相互作用分析的等效计算桩长简化模型[J]. 地震工程与工程振动, 2019, 39(1):8-17. [5] 王克海. 桥梁抗震研究[M]. 北京:中国铁道出版社, 2007. [6] 刘腾飞, 叶爱君, 王晓伟. 土体约束对桩柱式桥墩塑性铰长度的影响[J]. 同济大学学报(自然科学版), 2016, 44(10):1490-1496. [7] CHAI Y H, HUTCHINSON T C. Flexural strength and ductility of extended pile-shafts. I:analytical model [J]. Journal of Structural Engineering ASCE, 2002, 128(5):595-602. [8] NAGGAR M H,NOVAK M. Nonlinear analysis for dynamic lateral pile response [J]. Soil Dynamics and Earthquake Engineering, 1995, 14(2):141-157. [9] BOULANGER R W, CURRAS C J, KUTTER B L, et al. Seismic soilpile-structure interaction experiments and analyses[J]. Geotechn. Geoenviron. Eng., 1999,125(9):750-759. [10] DURANTE M G, SARNO L D, MYLONAKIS G, et al. Soil-pile-structure interaction:experimental outcomes from shaking table tests[J]. Earthquake Engineering & Structural Dynamics, 2016, 45(7):1041-1061. [11] 杨迎春, 钱德玲, 雷超. 桩-土-结构动力相互作用体系振动台模型试验研究[J]. 四川建筑科学研究, 2010, 36(3):138-141. [12] 李雨润, 史精, 梁艳,等. 基于Opensees的桩土动力p-y曲线模型研究[J]. 人民长江, 2015, 46(23):82-86. [13] Pacific Earthquake Engineering Research Center.OpenSees [EB/OL].[2022-07-05].https://opensees.berkeley.edu/. 2022. [14] American Petroleun Institute(API). Recommended practice for planning, designing, and constructing fixed offshore platforms:working stress design:2A-WSD[S]. Washington,D. C.:API,1987. [15] 陈跃庆, 吕西林, 李培振,等. 不同土性的SSI对基底地震动的影响[J]. 武汉大学学报(工学版), 2005, 38(3):63-68. [16] 丁选明, 吴琪, 刘汉龙,等. 建筑物下珊瑚砂地基动力响应振动台模型试验研究[J]. 岩土工程学报, 2019, 41(8):1408-1417. [17] FAYEZ A F, NAGGAR M, CERATO A B, et al. Seismic response of helical pile groups from shake table experiments [J/OL]. Soil Dynamics and Earthquake Engineering, 2022, 152[2022-07-05]. https://doi.org/10.1016/j.soildyn.2021.107008.
点击查看大图
计量
- 文章访问数: 63
- HTML全文浏览量: 6
- PDF下载量: 2
- 被引次数: 0