Experimental Study on Mechanical Properties of Artificially Frozen Soft Clay
-
摘要: 为研究不同因素对天津地铁7号线冻结软黏土力学特性的影响,对人工冻结软黏土进行了不同温度、不同围压以及不同加载速率条件下的三轴压缩试验。结果表明:不同冻结温度、不同围压下冻结软黏土的应力-应变曲线均为应变硬化型;在试验条件下,冻结软黏土的抗压强度与围压、加载速率呈正相关,与冻结负温呈负相关;随着冻结负温的降低,试样破坏模式由鼓胀变形变为局部剪切破坏,围压水平对抗压强度的影响逐渐减小;在试验冻结负温范围内,黏聚力随冻结负温降低而增大,变化范围为0.897~3.281 MPa,内摩擦角随冻结负温降低而减小,变化范围为7.7°~20.6°,两者与冻结负温均有良好的线性关系;采用四种冻土应力-应变关系对实测数据进行拟合,验证了改进Duncan-Chang模型对冻结软黏土的适用性。Abstract: To study the influence of different factors on mechanical properties of frozen soft clay of Tianjin Metro Line 7, triaxial compression tests were conducted on artificially frozen soft clay at different temperatures, confining pressures, and loading rates. The results indicated that the stress-strain curves of frozen soft clay at different temperatures and confining pressures were all strain hardening. In experimental conditions, the peak compressive strength of frozen soft clay was positively correlated with confining pressures and loading rates and negatively correlated with temperatures. With the decrease of frozen negative temperature, the failure mode of specimens changed from bulging deformation to local shear failure, and the influence of confining pressure levels on compressive strength gradually decreased. In the frozen negative temperature range of tests, with the decrease of frozen negative temperatures, the cohesive strength increased range of 0.897 to 3.281 MPa, the internal frictional angle decreased varying in the range of 7.7° to 20.6°. Both of them had good linear relations with frozen negative temperature. Four kinds of frozen soil relations between stress and strain were used to fit the measured data, and the applicability of the improved Duncan-Chang's model to frozen soft clay was verified.
-
Key words:
- strength of frozen soil /
- temperature /
- confining pressure /
- loading rate /
- constitutive model
-
[1] 崔托维奇. 冻土力学[M]. 张长庆,译. 北京:科学出版社, 1985. [2] 张雅琴,杨平,江汪洋,等. 含水率及应变速率对冻结粉质黏土强度特性影响[J]. 郑州大学学报(工学版),2020,41(3):79-84. [3] 张雅琴,杨平,江汪洋,等. 粉质黏土冻土三轴强度及本构模型研究[J]. 土木工程学报,2019,52(增刊1):8-15. [4] 杜海民,马巍,张淑娟,等. 应变率与含水率对冻土单轴压缩特性影响研究[J]. 岩土力学,2016,37(增刊5):1373-1379. [5] 牛亚强,赖远明,王旭,等. 初始含水率对冻结粉质黏土变形和强度的影响规律研究[J]. 岩土力学,2016,37(2):499-506. [6] 张遂,匡航,靳占英,等. 高含水量冻粉黏土应力-应变曲线特性的试验研究[J]. 水文地质工程地质,2020,47(5):116-124. [7] 汪恩良,任志凤,韩红卫,等. 超低温冻结黏土单轴抗压力学性质试验研究[J]. 岩土工程学报,2021,43(10):1851-1860. [8] 蔡正银,吴志强,黄英豪,等. 冻土单轴抗压强度影响因素的试验研究[J]. 冰川冻土,2015,37(4):1002-1008. [9] XU X, WANG B, FAN C, et al. Strength and deformation characteristics of silty clay under frozen and unfrozen states[J/OL]. Cold Regions Science and Technology, 2020,172.[2022-07-04].https://doi.org/10.1016/j.coldregions.2019.102982. [10] 宋丙堂,刘恩龙,张德,等. 高温冻结粉土力学特性试验研究[J]. 冰川冻土,2019,41(3):595-605. [11] 孙义强,孟上九,王淼,等. 负温和初始含水率对冻结粉质黏土力学性质的影响[J]. 应用基础与工程科学学报,2021,29(1):193-205. [12] 杜海民,马巍,张淑娟,等. 围压与含水率对冻结砂土破坏应变能密度影响特性研究[J]. 岩土力学,2017,38(7):1943-1950. [13] 栗晓林,王红坚,牛永红. 不同加载速率下冻结黏土的强度及破坏特性[J]. 岩土工程学报,2017,39(12):2335-2340. [14] 李楠楠,范彩霞,白瑞强. 冻土弹塑性本构模型研究现状[J]. 冰川冻土,2019,41(3):646-656. [15] 赖远明,程红彬,高志华,等. 冻结砂土的应力-应变关系及非线性莫尔强度准则[J]. 岩石力学与工程学报,2007(8):1612-1617. [16] 姜永东,鲜学福,粟健. 单一岩石变形特性及本构关系的研究[J]. 岩土力学,2005(6):941-945. [17] BAI Y, SHAN R L, WU Y X, et al. Development and application of a new triaxial testing system for subzero rocks[J]. Geotechnical Testing Journal, 2021, 44(5):1327-1349. [18] 中华人民共和国煤炭工业部. 人工冻土物理力学性能试验第1部分:人工冻土试验取样及试样制备方法:MT/T 593.1-2011[S]. 北京:中国煤炭工业出版社,2011. [19] 中华人民共和国煤炭工业部. 人工冻土物理力学性能试验第5部分:人工冻土三轴剪切强度试验方法:MT/T 593.5-2011[S]. 北京:中国煤炭工业出版社,2011. [20] 王永忠,刘雄军,艾传井,等. 南方短时冻土抗剪强度指标c、φ值的试验研究[J]. 武汉大学学报(工学版),2010,43(2):198-202. [21] 王万平,张熙胤,王义,等. 季节冻土区黄土抗剪强度变化特征及其影响因素[J]. 哈尔滨工业大学学报,2022,54(8):143-150. [22] VIALOV S S.The strength and creep calculation of the barriers made of frozen soil[J].Soil Mechanics & Foundation Engineering, 1963,11(9):25-26. [23] DHNCAN J M, CHANG C Y. Nonlinear analysis of stress and strain in soils [C]//Proc.ASCE,JGTD.1975. [24] 单仁亮,白瑶,隋顺猛,等. 淡水冰三轴压缩力学特性试验研究[J]. 应用基础与工程科学学报,2018,26(4):901-917.
点击查看大图
计量
- 文章访问数: 95
- HTML全文浏览量: 16
- PDF下载量: 5
- 被引次数: 0