Performance Evaluation of Prestressed Concrete Containment Sturctuce Based on Finite Element Model Updating
-
摘要: 核电厂安全壳是保障核电机组安全运行的重要实体屏障,打压试验是验证安全壳结构强度和密封性的重要手段,在核电厂建造完成投入使用前,通过打压试验来验证安全壳建造质量和结构性能是否满足设计要求。由于预应力安全壳结构复杂,准确地计算预测安全壳在打压试验下的结构响应较为困难。以某三代核电厂预应力混凝土安全壳为研究对象,基于ANSYS建立了安全壳精细化三维有限元模型,在安全壳预应力张拉和打压试验期间持续监测结构整体变形和应变,并通过预应力钢束分批次张拉期间混凝土应变实测值和计算值的吻合分析,开展有限元模型初始修正。基于修正后的有限元模型,在打压试验前计算预测安全壳在试验压力下的结构变形。打压试验期间的监测实测数据表明:通过上述有限元模型修正方法,可以较为准确地计算预测安全壳在试验压力下的结构性能。Abstract: The nuclear power plant containment is an important physical barrier to ensure the safe operation of nuclear power units. The Containment Tightness Test (CTT) is an important means to verify the strength and tightness of the containment structure. Before the nuclear power plant is built and put into use, the CTT is used to verify whether the construction quality and structural performance of the containment meet the design requirements. Due to the complexity of the prestressed containment structure, it is difficult to accurately calculate and predict the structural response of the containment under the pressure test. Taking a third generation nuclear power plant as the research object, a refined three-dimensional finite element model of the containment was established based on ANSYS. The overall deformation and strain of the structure were continuously monitored during the prestressed tension and CTT of the containment. The initial analysis parameters of the finite element model were modified through the coincidence analysis of the measured and calculated values of concrete strain during batch tensioning of prestressed tendons. Based on the modified finite element model, the structural deformation of the containment under test pressure were calculated and predicted before the CTT. The monitoring measured data during the CTT showed that the structural performance of the containment under test pressure can be accurately calculated and predicted by the above finite element model modification method.
-
[1] 孔宪京,林皋. 核电厂工程结构抗震研究进展[J]. 中国工程科学,2013,15(4):62-74. [2] 中华人民共和国住房和城乡建设部. 核电厂混凝土结构技术标准:GB/T 51390-2019[S]. 北京:中国计划出版社,2020. [3] 许凯伟,荣华,杨璋,等. 压水堆核电机组安全壳结构自动化监测系统开发与应用[J]. 建筑结构,2018, 48(16):111-113. [4] 李建波,梁招瑞,宋永军,等. 某核电机组安全壳打压试验期间安全壳外加应变计数据分析研究[J]. 核技术,2019, 42(12):75-84. [5] 赵超超,陈金凤. 安全壳预应力系统三维仿真研究[J]. 工业建筑,2014,44(12):44-47. [6] 杨昕光,李吉娃,徐海翔等. 安全壳结构内压极限承载能力分析[J]. 工业建筑,2021, 51(12):74-78. [7] 付永强,张小水,胡成. 预应力混凝土结构施加预应力的Ansys模拟[J]. 工程与建设,2008,22(6):784-786. [8] 金松,李忠诚,蓝天云,等. 严重事故下预应力混凝土安全壳非线性分析及性能评估[J]. 核动力工程,2020,41(4):96-100. [9] 裴强,龚久宇. 核电厂安全壳在设计内压作用下薄弱环节研究[J]. 工业建筑,2017,47(10):81-85. [10] LI Z, GUO J, JIN S, et al. Fragility analysis and probabilistic safety evaluation of the nuclear containment structure under different prestressing loss conditions[J/OL]. Annals of Nuclear Energy, 2021. https://doi.org/10.1016/j.anucene.2021.108862. [11] TONG L, ZHOU X, CAO X. Ultimate pressure bearing capacity analysis for the prestressed concrete containment[J]. Annals of Nuclear Energy, 2018, 121:582-593. [12] HUANG X, KWON O S, BENTZ E, et al. Evaluation of CANDU NPP containment structure subjected to aging and internal pressure increase[J]. Nuclear engineering and design, 2017, 314:82-92. [13] 中华人民共和国住房和城乡建设部. 核电厂混凝土结构技术标准:GB/T 51390-2019[S]. 北京:中国计划出版社,2020. [14] 屈铁军,徐建,石云兴. 不同受力状态的钢筋混凝土构件的等效弹性模量[J]. 混凝土,2016,325(11):119-122.
点击查看大图
计量
- 文章访问数: 191
- HTML全文浏览量: 30
- PDF下载量: 5
- 被引次数: 0