Collapse Analysis of a 500 kV Transmission Tower Under the Combined Action of Typhoon and Microtopography
-
摘要: 研究了台风"莫兰蒂"过境厦门时,500 kV漳泉Ⅱ路输电铁塔在风速、风向、微地形风速加速比三者共同作用下的受力状态与倒塌成因。基于历史气象数据和铁塔破坏形态,确定了最有可能导致铁塔倒塌的风速、风向输入条件;基于CFD仿真分析,确定了倒塔塔位处24个风向角下的风速加速比,分析了两个符合现场破坏形态的风向角下铁塔主材、斜材应力,明确了输电铁塔破坏形态同风速、风向和风速加速比的内在联系,指出了福建沿海高电压等级输电线路抗台风设计时,也应当综合考虑风速、风向以及山区微地形广泛存在的风速加速比的影响。Abstract: The stress state and collapse cause of transmission tower of 500 kV Zhangquan line II under the combined action of wind speed, wind direction, and micro terrain wind speed-up ratio were studied when Typhoon Meranti passed Xiamen. Based on the historical meteorological data and the destruction pattern of the tower, the input conditions of wind speed and direction which were most likely to cause the tower to collapse were determined. Based on CFD simulation analysis, the wind speed-up ratio of 24 wind angles at the inverted tower position was determined, and the stress of main members and inclined members under two wind angles conforming to the site failure pattern was analyzed, and the internal relation between the failure pattern of transmission tower and wind speed, wind direction and wind speed-up ratio were clarified. The influence of wind speed, wind direction and wind speed-up ratio which widely existing in mountainous region should be considered comprehensively in the design of Fujian coastal high-voltage transmission line to against typhoon.
-
Key words:
- collapse analysis /
- wind speed-up ratio /
- CFD numerical simulation /
- failure mode /
- transmission tower
-
[1] 张卓群,李宏男,李士锋,等.输电塔-线体系灾变分析与安全评估综述[J].土木工程学报,2016,49(12):75-88. [2] 陆猛祥.自立式铁塔的计算机辅助设计[D].武汉:武汉大学,2004. [3] 吕付玉,刘宏滨. 道亨铁塔满应力分析软件与自立式铁塔内力分析软件的对比分析[J].广东电力,2011,24(6): 31-34. [4] 王璋奇.输电线路杆塔设计中的几个问题[J].电力建设,2002, 23(1):19-21. [5] 熊铁华,梁枢果,邹良浩.风荷载下输电铁塔的失效模式及其极限荷载[J].工程力学,2009,26(12):100-104,111. [6] 中国电力企业联合会.110~750 kV 架空输电线路设计规范:GB 50545—2010[S]. 北京:中国计划出版社,2010. [7] 王锦文. 强风作用下输电线塔结构塑性疲劳破坏机理研究[D].武汉:武汉理工大学,2008. [8] 杨风利,党会学,杨靖波,等.500 kV输电线路塔线体系舞动响应分析[J].中国电力,2015,48(7):139-145. [9] 瞿伟廉,梁政平,王力争,等.下击暴流的特征及其对输电线塔风致倒塌的影响[J].地震工程与工程振动,2010,30 (6):120-126. [10] ALBERMANI F, KITIPORNCHAI S, CHAN R W K. Failure analysis of transmission towers[J].Engineering Failure Analysis,2009, 16(6):1922-1928. [11] 李永乐,蔡宪棠,唐康,等.深切峡谷桥址区风场空间分布特性的数值模拟研究[J].土木工程学报,2011,44(2):116-122. [12] 李正良,孙毅,魏奇科,等.山地平均风加速效应数值模拟[J].工程力学,2010,27(7):32-37. [13] 周志勇,肖亮,丁泉顺,等.大范围区域复杂地形风场数值模拟研究[J].力学季刊,2010,31(1):101-107. [14] 姜传忠. 沿海复杂地形条件下风场模拟研究[D].哈尔滨:哈尔滨工业大学,2011. [15] HE J M, SONG C C S.Evaluation of pedestrian winds in urban area by numerical approach[J].Journal of Wind Engineering and Industrial Aerodynamics, 1999,81(1/2/3):295-309. [16] TAKASHI N. Prediction of large-scale wind field over complex terrain by finite element method[J].Journal of Wind Engineering and Industrial Aerodynamics, 1997,67-68:947-948. [17] 姚博,全涌,顾明,等.混合气候地区极值风速分析方法研究[J].工程力学,2018,35(5):86-92. [18] 赵林,潘晶晶,梁旭东,等.台风边缘/中心区域经历平坦地貌时平均风剖面特性[J].土木工程学报,2016,49(8):45-52. [19] 付兴,杜文龙,郑帅,等.台风作用下输电线路风振系数及抗风性能研究[J].东北大学学报(自然科学版),2022,43(7):913-920. [20] SHARMA R N, RICHARDS P J. A re-examination of the characteristics of tropical cyclone winds[J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,83:21-33. [21] 赵林.风场模式数值模拟与大跨桥梁抖振概率评价[D].上海:同济大学,2003. [22] 李波,张星灿,杨庆山,等.台风"苏力"近地风场脉动特性实测研究[J].建筑结构学报,2015,36(4):99-104. [23] AN L Q, GUAN Y Y, ZHU Z J, et al. Structural failure analysis of a river-crossing transmission line impacted by the super typhoon Rammasun[J]. Engineering Failure Analysis, 2019,104:911-931. [24] 张宏杰,杨靖波,杨风利,等.台风风场参数对输电杆塔力学特性的影响[J].中国电力,2016,49(2):41-47.
点击查看大图
计量
- 文章访问数: 184
- HTML全文浏览量: 23
- PDF下载量: 5
- 被引次数: 0