Research and Application of the Curvature Modal Parameter Method in Quantitative Damage Identigication of String Structures
-
摘要: 针对目前张弦结构损伤识别动力检测只能定性判断的问题,提出能够定量识别的曲率模态参数法。以改进的曲率模态绝对差和曲率模态变化率为损伤识别指标,判断结构损伤位置,定量诊断损伤程度。以某体育馆大跨张弦梁结构为研究对象,建立ANSYS有限元模型,通过降低结构单元弹性模量模拟多种损伤工况,对损伤指标进行有效性验证。结果表明:仅获取低阶模态振型数据,采用改进的曲率模态绝对差指标能精准判断上弦构件损伤位置,曲率模态变化率指标能较精确识别上弦构件和下弦拉索损伤程度,方法简便,成本较低。Abstract: So far, damage identification of string structures based on dynamic detection can be only qualitatively estimated. Aiming at the subsistent problem, a method which could quantitatively identify curvature model parameters was proposed. The improved absolute difference indexes and variation ratio indexes of curvature modals were used to diagnose structural damage. Structural damage locations and damage degrees were determined by the above damage identification indexes. Taking a stadium with long-span beam-string structure as a research object, the ANSYS finite element model was constructed. In order to verify the availability of damage identification indexes, a variety of damage cases were simulated by reducing elastic moduli of structural elements. The results showed that structural damage locations of the upper chord member could be precisely judged by the improved absolute difference indexes of curvature modals, and structural damage degrees of the upper chord member and the lower chord cable could be accurately identified by the variation ratio indexes of curvature modals through lower-order modal data. The method was simple and low-cost.
-
[1] MASAO S. Principle of beam string structure, Word Congress on Shell and Spatial Structure[C]//Proceedings of IASS Symposium. 1979:617-638. [2] 陈志华.张弦结构体系研究进展及发展展望[J]. 工业建筑,2015,45(8):1-9,52. [3] 汪大绥,张富林,高承勇,等. 上海浦东国际机场(一期工程)航站楼钢结构研究与设计[J]. 建筑结构学报,1999,20(2):2-8. [4] KANG W J, CHEN Z H, LAM H F, et al. Analysis and design of the general and outmost-ring stiffed suspen-dome structures[J]. Engineering Structures, 2003, 25(13):1685-1695. [5] 曾滨,尚仁杰,崔璀,等. 外套管及刚性预应力撑杆加固受压杆的稳定性分析[J]. 工业建筑,2021,51(6):133-137. [6] 杨大彬,刘斌,魏晔,等. 两端直线形张弦桁架结构的力学性能研究[J]. 工业建筑,2020,50(10):138-144. [7] YEOL K J. A study on lateral buckling of beam string structures[J]. Journal of the Korean association for spatial structures, 2013, 13(4):49-56. [8] LEE S, SEO M, PARK S, et al. Geometrical parametric study on two-way beam string structures[J]. Journal of the korean sssociation for spatial structures, 2019, 19(3):69-76. [9] 曾滨. 预应力钢结构诊治关键技术研究及展望[J]. 工业建筑,2017,47(1):135-143,167. [10] 王静,张伟,王骑. 基于曲率模态法的简支板桥损伤识别研究[J]. 工业建筑,2006(增刊1):225-227. [11] PANDEY A K, BISWAS M, SAMMAN M M. Damage detection from changes in curvature mode shapes[J]. Journal of Sound Vibration, 1991, 145(2):321-332. [12] MESSINA A, JONES I A, WILLAMS E J. Damage detection and localization using frequency changes[C]//Proceedings of the International Conference on the Identification in Engineering Systems. 1996:67-76. [13] RATCLIFFE C P. Damage detection using a modified Laplacian operator on mode shape data[J]. Journal of Sound and Vibration, 1997, 204(3):505-517. [14] 赵俊,程良彦,马宏伟.基于曲率模态的拱板结构损伤识别[J]. 暨南大学学报(自然科学版),2008(5):470-477. [15] 曾滨,周臻,张庆方,等. 基于数据融合的张弦桁架损伤识别方法与试验研究[J]. 土木工程学报,2020,53(8):28-37,86. [16] 沈庆阳,纪国宜. 基于曲率模态的薄板结构的损伤定位研究[J]. 工业建筑,2013,43(增刊1):322-326. [17] 张开银,孙峙华,邹晓军,等. 桥梁结构损伤识别的曲率模态技术[J]. 武汉理工大学学报(交通科学与工程版),2004(6):855-858. [18] 刘人杰,薛素铎,李雄彦,等.环形交叉索桁结构局部断索(杆)的动力响应分析[J]. 工业建筑,2015,45(1):32-35,42. [19] 蔡英. 常州工学院体育馆结构设计[J]. 上海建设科技,2006(3):16-17. [20] 朱岩,尚仁杰. 预应力影响矩阵法在网壳结构张拉控制中的应用[J]. 建筑结构学报,2016,37(增刊1):145-151. [21] 刘国光. 考虑损伤累积的张弦梁动力失效全过程分析[D]. 杭州:浙江大学,2008. [22] 沈祖炎,沈苏. 高层钢结构考虑损伤累积及裂纹效应的抗震分析[J]. 同济大学学报(自然科学版),2002,4(30):393-398.
点击查看大图
计量
- 文章访问数: 125
- HTML全文浏览量: 24
- PDF下载量: 1
- 被引次数: 0