Study on Deformation Behavior of Prestressed Concrete Containment Under the Comprehensive Environmental Factors
-
摘要: 在安全壳结构整体性试验中,安全壳变形主要由试验压力引起,同时受环境温度、太阳辐射等综合环境因素的影响。为提高试验的变形测量精度,并对其进行合理的修正,通过有限元模拟分析,研究了环境温度、太阳辐射、辐射换热以及不同热边界条件施加方法对安全壳变形的影响规律。结果表明,安全壳位移随环境温度近似呈正弦曲线变化,较环境温度变化滞后约2 h。当忽略太阳辐射的影响时,穹顶竖向位移平均幅值降低了约49%,筒身水平径向位移平均幅值降低了约21%,说明环境温度和太阳辐射是影响安全壳变形的主要环境因素,应在安全壳结构整体性试验时对变形测量结果进行合理的修正。辐射换热是影响安全壳结构变形的次要环境因素,为保障模拟精度,建议考虑该因素的影响。当采用不同热边界条件施加方法时,安全壳变形几乎相同。Abstract: In the structural integrity test of the containment, the deformation of the containment is mainly caused by the test pressure and is also influenced by the ambient temperature, solar radiation and other comprehensive factors. In order to improve the deformation measurement accuracy of the test and make reasonable corrections, this paper investigates the influence law of ambient temperature, solar radiation, radiation heat exchange and different thermal boundary condition application methods on the deformation of the containment through finite element simulation analysis.The results show that the displacement of containment varies approximately sinusoidal with the ambient temperature, and lags behind the ambient temperature by about 2 h, and when the effect of solar radiation is ignored, the vertical average displacement amplitude of the dome is reduced by about 49% and the horizontal radial average displacement amplitude of the barrel is reduced by about 21%, indicating that the ambient temperature and solar radiation are the main environmental factors affecting the deformation of the containment, and reasonable corrections should be made to the deformation measurement results during the structural integrity test of the containment. Radiative heat exchange is a secondary environmental factor affecting the deformation of the containment structure, and it is recommended to consider the influence of this factor in order to guarantee the simulation accuracy. The containment deformation is almost the same when different thermal boundary condition application methods are used.
-
[1] 易平,王庆康,刘君.内压作用下CPR1000安全壳的破坏机理研究[J].哈尔滨工程大学学报, 2016, 37(2): 162-167. [2] 孙造占, 刘素娟, 林松涛, 等. 预应力安全壳强度监测方法探讨[J]. 核科学与工程, 2002(2): 172-176. [3] 付春雨,严鹏,唐波.单箱多室混凝土箱梁结构的日照温度场分析[J].武汉理工大学学报(交通科学与工程版),2022,46(2):270-274. [4] 尹永胜,吴金鹏,张越,等.高墩波形钢腹板PC连续刚构桥温度场研究[J].公路,2021,66(5):176-182. [5] 何冲.基于ANSYS的溢流坝施工期非稳定温度场仿真计算分析[J].水利科技与经济,2022,28(5):23-28,32. [6] 林志伸,闫继红.大气环境下核电站安全壳温度场的时程分析[J].土木工程学报,2003(6):12-17. [7] 刘世豪. 核岛外层安全壳施工温度场特性及效应分析[D].哈尔滨:哈尔滨工业大学,2014. [8] 黎鹏飞,李忠诚.压水堆核电厂安全壳结构温度效应分析[J].工业建筑,2011,41(增刊1):140-144. [9] 张冰.安全壳整体密封试验温度场分布模拟计算[J].电工技术, 2017(7):129-131. [10] 刘永健,刘江,张宁.桥梁结构日照温度作用研究综述[J].土木工程学报,2019,52(5):59-78. [11] 刘诚. 钢-混凝土组合桥梁的温度场和温度效应研究[D].北京:清华大学, 2018. [12] 张双洋. 大跨度高速铁路钢筋混凝土劲性骨架拱桥收缩徐变及温度场研究[D].成都:西南交通大学, 2020. [13] 郭风俊.基于ANSYS的不平衡日照混凝土箱梁温度场分布研究[J].西安建筑科技大学学报(自然科学版), 2020,52(2): 207-212. [14] 聂玉东. 寒区大跨径混凝土箱梁桥温度场及温度效应分析[D].哈尔滨:哈尔滨工业大学,2013. [15] 赵剑锋. 大跨度混凝土箱梁桥温度场及其效应研究[D].成都:西南交通大学,2010. [16] 林媛.太阳辐射强度模型的建立及验证[J].安徽建筑工业学院学报(自然科学版),2007(5):44-46. [17] KEHLBECK F. Einfluss der sonnenstrahlung bei bruckenbauwerken [D]. Dusseldrof: Technische Universitat Hannover, 1975. [18] DILGER W H, GHALI A, CHAN M, et al. Temperature stresses in composite box girder bridges [J]. Journal of Structural Engineering, 1990, 109(6): 1460-1478. [19] 彭友松. 混凝土桥梁结构日照温度效应理论及应用研究[D].成都:西南交通大学,2007. [20] 赵人达,王永宝.日照作用下混凝土箱梁温度场边界条件研究[J].中国公路学报, 2016,29(7): 52-61. [21] 刘文燕,耿耀明.混凝土表面太阳辐射吸收率试验研究[J].混凝土与水泥制品,2004(4): 8-11. [22] 李志磊,干钢,唐锦春.考虑辐射换热的建筑结构温度场的数值模拟[J].浙江大学学报(工学版),2004(7):122-127.
点击查看大图
计量
- 文章访问数: 86
- HTML全文浏览量: 16
- PDF下载量: 0
- 被引次数: 0