中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊
中国建筑科学领域高质量科技期刊分级目录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维增强复合材料约束尾矿粉地聚物再生混凝土轴压性能研究

毛志杰 黄靓 吴越 曾令宏 邓鹏 李隐

毛志杰, 黄靓, 吴越, 曾令宏, 邓鹏, 李隐. 纤维增强复合材料约束尾矿粉地聚物再生混凝土轴压性能研究[J]. 工业建筑, 2023, 53(6): 209-217. doi: 10.13204/j.gyjzG22061601
引用本文: 毛志杰, 黄靓, 吴越, 曾令宏, 邓鹏, 李隐. 纤维增强复合材料约束尾矿粉地聚物再生混凝土轴压性能研究[J]. 工业建筑, 2023, 53(6): 209-217. doi: 10.13204/j.gyjzG22061601
MAO Zhijie, HUANG Liang, WU Yue, ZENG Linghong, DENG Peng, LI Yin. Research on Mechanical Properties of FRP-Constrained Geopolymeric Recycled Concrete Mixed with Tailing Powder Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(6): 209-217. doi: 10.13204/j.gyjzG22061601
Citation: MAO Zhijie, HUANG Liang, WU Yue, ZENG Linghong, DENG Peng, LI Yin. Research on Mechanical Properties of FRP-Constrained Geopolymeric Recycled Concrete Mixed with Tailing Powder Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(6): 209-217. doi: 10.13204/j.gyjzG22061601

纤维增强复合材料约束尾矿粉地聚物再生混凝土轴压性能研究

doi: 10.13204/j.gyjzG22061601
基金项目: 

工信部课题(TC210H029)。

国家重点研发计划项目(2019YFC1904700)

详细信息
    作者简介:

    毛志杰,男,1996年出生,硕士。

    通讯作者:

    黄靓,男,1974年出生,博士,教授,huangliangstudy@126.com。

Research on Mechanical Properties of FRP-Constrained Geopolymeric Recycled Concrete Mixed with Tailing Powder Under Axial Compression

  • 摘要: 针对再生骨料强度和延性较低、尾矿资源化利用率较低、地聚物混凝土较脆等缺陷,通过采用纤维增强复合材料(FRP)对混凝土进行约束用来改善其强度和延性等力学性能,并提高资源化利用率。因此,以FRP类型、FRP层数、核心混凝土轴心强度等级为变量设计了14组共计42个试件,对FRP约束尾矿粉地聚物再生混凝土(FRP-GRC-TP)的轴压性能进行了试验研究和理论模型分析。结果表明:核心混凝土的强度和延性显著提高,FRP层数越多,增强作用越强,且FRP约束低强度等级混凝土的增强效果更加明显。提出的2个建议拟合强度模型和1个建议拟合极限应变模型的理论计算值与试验值误差较小,对FRP约束尾矿粉地聚物再生混凝土的强度和极限应变的预测精准度高。
  • [1] WANG C, WANG P, ZHANG M. Resource recycling sustainability assessment in ready-mixed concrete manufactured on energy consumption and environmental safety in China[J]. Environmental Science and Pollution Research, 2021, 28(15): 19521-19529.
    [2] 申艳军,白志鹏,郝建帅,等.尾矿制备混凝土研究进展与利用现状分析[J].硅酸盐通报,2021,40(3):845-857

    ,876.
    [3] GAO C, HUANG L, YAN L, et al. Behavior of glass and carbon FRP tube encased recycled aggregate concrete with recycled clay brick aggregate[J]. Composite Structures, 2016(155): 245-254.
    [4] MCLELLAN B C, WILLIAMS R P, LAY J, et al. Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement[J]. Journal of cleaner production, 2011, 19(9/10): 1080-1090.
    [5] 刘玉霞, 逯静洲, 田飞翔,等.地聚物混凝土在盐水与冻融作用下的损伤研究[J]. 工业建筑, 2020, 50(4):76-81.
    [6] 史才军,曹芷杰,谢昭彬.再生混凝土力学性能的研究进展[J].材料导报,2016,30(23):96-103

    ,126.
    [7] 肖建庄,李佳彬,孙振平,等.再生混凝土的抗压强度研究[J].同济大学学报(自然科学版),2004(12):1558-1561.
    [8] 王书锐.地聚物混凝土的性能特点及应用研究进展[J].山西建筑,2015,41(17):88-90.
    [9] THOMAS R J, PEETHAMPARAN S. Alkali-activated concrete: engineering properties and stress-strain behavior[J]. Construction and Building Materials, 2015, 93: 49-56.
    [10] GANESH A C, MUTHUKANNAN M. Development of high performance sustainable optimized fiber reinforced geopolymer concrete and prediction of compressive strength[J/OL]. Journal of Cleaner Production, 2021, 282[2022-06-16].https//doi.org/10.1016/j.jclepro.2020.124543.
    [11] 高鹏,黄镜渟,周安,等. 玄武岩纤维布和碳纤维布加固高强混凝土柱轴压性能试验研究[J]. 工业建筑, 2019,49(9):139-144

    ,160.
    [12] BERNAL S A, PROVIS J L, MYERS R J, et al. Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders[J]. Materials and Structures, 2015(48): 517-529.
    [13] FERNÁNDEZ-JIMÉNEZ A, PUERTAS F. Effect of activator mix on the hydration and strength behaviour of alkali-activated slag cements[J]. Advances in Cement Research, 2003, 15(3): 129-136.
    [14] WANG S D, SCRIVENER K L, PRATT P L. Factors affecting the strength of alkali-activated slag[J]. Cement and Concrete Research, 1994, 24(6): 1033-1043.
    [15] FERNÁNDEZ-JIMÉNEZ A, PALOMO J G, PUERTAS F. Alkali-activated slag mortars: mechanical strength behaviour[J]. Cement and Concrete Research, 1999, 29(8): 1313-1321.
    [16] 毛志杰,黄靓,曾令宏,等.掺尾矿粉地聚物再生混凝土基本力学性能研究[J].混凝土,2022(11):91-95,100.
    [17] OZBAKKALOGLU T, XIE T. Geopolymer concrete-filled FRP tubes: behavior of circular and square columns under axial compression[J]. Composites Part B: Engineering, 2016(96): 215-230.
    [18] LAM L, TENG J G. Strength models for fiber-reinforced plastic-confined concrete[J]. Journal of Structural Engineering, 2002, 128(5): 612-623.
    [19] SAMAAN M, MIRMIRAN A, SHAHAWY M. Model of concrete confined by fiber composites[J]. Journal of Structural Engineering, 1998, 124(9): 1025-1031.
    [20] XIAO Q G, TENG J G, YU T. Behavior and modeling of confined high-strength concrete[J]. Journal of Composites for Construction, 2010, 14(3): 249-259.
    [21] MARQUES S P C, MARQUES D C S C, LINS DA SILVA J, et al. Model for analysis of short columns of concrete confined by fiber-reinforced polymer[J]. Journal of Composites for Construction, 2004, 8(4): 332-340.
    [22] BINICI B. An analytical model for stress-strain behavior of confined concrete[J]. Engineering Structures, 2005, 27(7): 1040-1051.
  • 加载中
计量
  • 文章访问数:  99
  • HTML全文浏览量:  13
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-16
  • 网络出版日期:  2023-08-18

目录

    /

    返回文章
    返回