Research on Mechanical Properties of FRP-Constrained Geopolymeric Recycled Concrete Mixed with Tailing Powder Under Axial Compression
-
摘要: 针对再生骨料强度和延性较低、尾矿资源化利用率较低、地聚物混凝土较脆等缺陷,通过采用纤维增强复合材料(FRP)对混凝土进行约束用来改善其强度和延性等力学性能,并提高资源化利用率。因此,以FRP类型、FRP层数、核心混凝土轴心强度等级为变量设计了14组共计42个试件,对FRP约束尾矿粉地聚物再生混凝土(FRP-GRC-TP)的轴压性能进行了试验研究和理论模型分析。结果表明:核心混凝土的强度和延性显著提高,FRP层数越多,增强作用越强,且FRP约束低强度等级混凝土的增强效果更加明显。提出的2个建议拟合强度模型和1个建议拟合极限应变模型的理论计算值与试验值误差较小,对FRP约束尾矿粉地聚物再生混凝土的强度和极限应变的预测精准度高。Abstract: Aiming at the defects of low strength and ductility of recycled aggregate, low utilization rate of tailings and relative brittleness of geopolymer concrete, fiber reinforced polymer (FRP) was adopted to restraint concrete for enhancing the utilization rate of resources and ameliorating the mechanical properties such as strength and ductility. Therefore, taking the type of FRP, the number of FRP layers and the axial strength grade of core concrete as variables, a total of 42 specimens in 14 groups were designed to carry out axial compressive performance test research and theoretical model analysis of FRP-constrained geopolymeric recycled concrete mixed with tailing powder (FRP-GRC-TP) in the paper. The results showed that the FRP-GRC-TP composite structure significantly improved the strength and ductility of core concrete, and the more layers of FRP, the stronger the enhancement effect. In addition, the enhancement effect of FRP-constrained low-strength concrete was more obvious. The two suggested fitting strength models and one suggested fitting limit strain model proposed in the study had small errors between theoretical calculated values and experimental values, and showed a high prediction accuracy for the strength and ultimate strain of FRP-GRC-TP.
-
[1] WANG C, WANG P, ZHANG M. Resource recycling sustainability assessment in ready-mixed concrete manufactured on energy consumption and environmental safety in China[J]. Environmental Science and Pollution Research, 2021, 28(15): 19521-19529. [2] 申艳军,白志鹏,郝建帅,等.尾矿制备混凝土研究进展与利用现状分析[J].硅酸盐通报,2021,40(3):845-857,876. [3] GAO C, HUANG L, YAN L, et al. Behavior of glass and carbon FRP tube encased recycled aggregate concrete with recycled clay brick aggregate[J]. Composite Structures, 2016(155): 245-254. [4] MCLELLAN B C, WILLIAMS R P, LAY J, et al. Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement[J]. Journal of cleaner production, 2011, 19(9/10): 1080-1090. [5] 刘玉霞, 逯静洲, 田飞翔,等.地聚物混凝土在盐水与冻融作用下的损伤研究[J]. 工业建筑, 2020, 50(4):76-81. [6] 史才军,曹芷杰,谢昭彬.再生混凝土力学性能的研究进展[J].材料导报,2016,30(23):96-103,126. [7] 肖建庄,李佳彬,孙振平,等.再生混凝土的抗压强度研究[J].同济大学学报(自然科学版),2004(12):1558-1561. [8] 王书锐.地聚物混凝土的性能特点及应用研究进展[J].山西建筑,2015,41(17):88-90. [9] THOMAS R J, PEETHAMPARAN S. Alkali-activated concrete: engineering properties and stress-strain behavior[J]. Construction and Building Materials, 2015, 93: 49-56. [10] GANESH A C, MUTHUKANNAN M. Development of high performance sustainable optimized fiber reinforced geopolymer concrete and prediction of compressive strength[J/OL]. Journal of Cleaner Production, 2021, 282[2022-06-16].https//doi.org/10.1016/j.jclepro.2020.124543. [11] 高鹏,黄镜渟,周安,等. 玄武岩纤维布和碳纤维布加固高强混凝土柱轴压性能试验研究[J]. 工业建筑, 2019,49(9):139-144,160. [12] BERNAL S A, PROVIS J L, MYERS R J, et al. Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders[J]. Materials and Structures, 2015(48): 517-529. [13] FERNÁNDEZ-JIMÉNEZ A, PUERTAS F. Effect of activator mix on the hydration and strength behaviour of alkali-activated slag cements[J]. Advances in Cement Research, 2003, 15(3): 129-136. [14] WANG S D, SCRIVENER K L, PRATT P L. Factors affecting the strength of alkali-activated slag[J]. Cement and Concrete Research, 1994, 24(6): 1033-1043. [15] FERNÁNDEZ-JIMÉNEZ A, PALOMO J G, PUERTAS F. Alkali-activated slag mortars: mechanical strength behaviour[J]. Cement and Concrete Research, 1999, 29(8): 1313-1321. [16] 毛志杰,黄靓,曾令宏,等.掺尾矿粉地聚物再生混凝土基本力学性能研究[J].混凝土,2022(11):91-95,100. [17] OZBAKKALOGLU T, XIE T. Geopolymer concrete-filled FRP tubes: behavior of circular and square columns under axial compression[J]. Composites Part B: Engineering, 2016(96): 215-230. [18] LAM L, TENG J G. Strength models for fiber-reinforced plastic-confined concrete[J]. Journal of Structural Engineering, 2002, 128(5): 612-623. [19] SAMAAN M, MIRMIRAN A, SHAHAWY M. Model of concrete confined by fiber composites[J]. Journal of Structural Engineering, 1998, 124(9): 1025-1031. [20] XIAO Q G, TENG J G, YU T. Behavior and modeling of confined high-strength concrete[J]. Journal of Composites for Construction, 2010, 14(3): 249-259. [21] MARQUES S P C, MARQUES D C S C, LINS DA SILVA J, et al. Model for analysis of short columns of concrete confined by fiber-reinforced polymer[J]. Journal of Composites for Construction, 2004, 8(4): 332-340. [22] BINICI B. An analytical model for stress-strain behavior of confined concrete[J]. Engineering Structures, 2005, 27(7): 1040-1051.
点击查看大图
计量
- 文章访问数: 95
- HTML全文浏览量: 13
- PDF下载量: 1
- 被引次数: 0