Advances of Soil Cemented by Enzyme Induced Calcium Carbonate Precipitation
-
摘要: 脲酶诱导碳酸钙沉淀(EICP)是岩土工程领域一种绿色、环保的新型土体改良技术。与目前广泛关注的微生物诱导碳酸钙沉淀(MICP)相比,无需复杂的细菌培养流程,适用的土颗粒粒径范围更广,且在实际应用中避免了微生物生态安全等问题。通过对文献的归纳及整理,系统地阐述了EICP的固化机理、影响因素(脲酶性质、胶结液性质、固化方式、环境因素)等方面的前沿研究成果,分析了EICP技术发展中存在的问题及进一步的研究方向。Abstract: Enzyme induced calcium carbonate precipitation (EICP) is a green and environment-friendly new soil improvement technology in geotechnical engineering. Compared with microbial induced calcium carbonate precipitation (MICP) which has been widely concerned at present, EICP is applicable to a wider range of sand particle sizes and does not need a complex sterile culture process, and the problem of microbial ecological safety is avoided in practical application. On the basis of literature induction and sorting, the research achievements on the cementitious mechanism of enzyme induced calcium carbonate precipitation and the influencing factors (enzyme properties, cementing fluid properties, curing methods, environmental factors) were systematically described. The existing problems and further research directions in development of the enzyme induced calcium carbonate precipitation technique were discussed.
-
[1] 刘汉龙,肖鹏,肖杨,等. 微生物岩土技术及其应用研究新进展[J]. 土木与环境工程学报(中英文),2019,41(1):1-14. [2] 刘汉龙,赵明华. 地基处理研究进展[J]. 土木工程学报,2016,49(1):96-115. [3] 陈国兴,顾小锋,常向东,等. 1989-2011期间8次强地震中抗液化地基处理成功案例的回顾与启示[J]. 岩土力学,2015,36(4):1102-1118. [4] WHIFFIN V S. Microbial CaCO3 precipitation for the production of biocement[D]. Perth:Murdoch University, 2004. [5] AMAJIRAKUL S, PUNGRASMI W, LIKITLERS S. Efficiency of microbially-induced calcite precipitation in natural clays for ground improvement[J]. Construction and Building Materials, 2021, 282:1-11. [6] CHAE S H, CHUNG H, NAM K. Evaluation of microbially induced calcite precipitation (MICP) methods on different soil types for wind erosion control[J]. Environmental Engineering Research, 2020, 26(1):1-6. [7] 刘士雨,俞缙,曾伟龙,等. 微生物诱导碳酸钙沉淀修复三合土裂缝效果研究[J]. 岩石力学与工程学报,2020,39(1):191-204. [8] 李驰,田蕾,董彩环,等. MICP技术联合多孔硅吸附材料对锌铅复合污染土固化/稳定化修复的试验研究[J]. 岩土力学,2022,43(2):307-316. [9] KAVAZANJIAN E, ALMAJED A, HAMDAM N. Bio-inspired soil improvement using EICP soil columns and soil nails[C]//Byle M J. Grouting 2017:Grouting, Drilling, and Verification. 2017:13-22. [10] PUTR H, YASUHARA H, ERIZAL, et al. Review of Enzyme-Induced Calcite Precipitation as a ground improvement technique[J]. Infrastructures, 2020, 5(8).DOI:10.3390/infrastructures 5080066. [11] 张茜,叶为民,刘樟荣,等. 基于生物诱导碳酸钙沉淀的土体固化研究进展[J]. 岩土力学,2022,43(2):345-357. [12] NAFISI A, SAFAVIZADEH S, MONTOYA B M. Influence of microbe and enzyme-induced treatment on cemented sand shear response[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9):1-8. [13] HOANG T, ALLEMAN J, CETIN B, et al. Engineering properties of biocementation coarse-and fine-grained sand catalyzed by bacterial cells and bacterial enzyme[J]. Journal of Materials in Civil Engineering, 2020, 32(4):1-15. [14] DAS N, KAYASTHA A M, STRIVASTAVA P K. Purification and characterization of urease from dehusked pigeonpea (Cajanus cajan-L)seeds[J]. Phytochemistry, 2002, 61(5):513-521. [15] JAVADI N, KHODADADI H, HAMDAN N, et al. EICP treatment of soil by using urease enzyme extracted from watermelon seeds[C]//Stuedlein A W.Innovations in Ground Improvements for Soils, Pavements and Subgrades. 2018:115-124. [16] DILRUKSHI R, NAKASHIMA K, KAWASAKI S. Soil improvement using plant-derived urease-induced calcium carbonate precipitation[J]. Soils and Foundations, 2018, 58(4):894-910. [17] 吴林玉,缪林昌,孙潇昊,等.植物源脲酶诱导碳酸钙固化砂土试验研究[J]. 岩土工程学报,2020,42(4):714-720. [18] ZUSFAHAIR Z, NINGSIH D R, PUTRI D, et al. Partial purification and characterization of urease from black-eyed pea (Vigna unguiculata ssp unguiculata L)[J]. Journal of Fundamental and Applied Sciences, 2018, 14(1):20-24. [19] 张铁军,施圆圆,孔令漪,等. 黄豆豆渣中脲酶的提取精制及其影响因素研究[J]. 生物技术进展,2017,7(3):53-257. [20] NAM I, CHON C M, JUNK K Y, et al. Calcite precipitation by ureolytic plant (Canavalia ensiformis) extracts as effective biomaterials[J]. KSCE Journal of Civil Engineering, 2015, 19(6):1620-1625. [21] HE J, GAO Y, GU Z, et al. Characterization of crude bacterial urease for CaCO3 precipitation and cementation of silty sand[J]. Journal of Materials in Civil Engineering, 2020, 32(5):1-9. [22] CUI M J, LAI H J, HOANG T, et al. One-phase-low-pH enzyme induced carbonate precipitation (EICP) method for soil improvement[J]. Acta Geotechnica, 2020, 16(2):481-489. [23] JIANG X Y, RUTHERFORD C, CETIN B, et al. Reduction of Water Erosion Using Bacterial Enzyme Induced Calcite Precipitation (BEICP) for Sandy Soil[C]//Kavazanjian E.Biogeotechnic (Geo-Congress 2020). 2020:104-110. [24] 史冠宇. 脲酶沉积碳酸钙在土中发挥固化效用的试验研究[D]. 呼和浩特:内蒙古工业大学,2020. [25] GAO Y F, HE J, TANG X Y, et al. Calcium carbonate precipitation catalyzed by soybean urease as an improvement method for fine-grained soil[J]. Soils and Foundations, 2019, 59(5):1631-1637. [26] 张建伟,韩一,边汉亮,等. 大豆脲酶诱导碳酸钙固化粉土抗风侵蚀性能的试验研究[J]. 工业建筑,2020,50(12):19-24. [27] WHIFFIN V S, PAASSEN L A, HARKES M P. Microbial Carbonate Precipitation as a soil Improvement Technique[J]. Geomicrobiology Journal, 2007, 24(5):417-423. [28] NEUPANE D, YASUHARA H, KINOSHITA N, et al. Applicability of enzymatic calcium carbonate precipitation as a soil-strengthening technique[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(12):2201-2211. [29] ALMAJIED A, TIRKOLAEI H K, KAVAZANJIAN E, et al. Baseline investigation on enzyme-induced calcium carbonate precipitation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(11):1-11. [30] GOROSPE C M, HAN S H, KIM S G, et al. Effects of different calcium salts on calcium carbonate crystal formation by Sporosarcina pasteurii KCTC 3558[J]. Biotechnology & Bioprocess Engineering, 2013, 18(5):903-908. [31] ZHANG Y, GUO H X, CHENG X H. Influences of calcium sources on microbially induced carbonate precipitation in porous media[J]. Materials Research Innovations, 2014, 18:79-84. [32] LIU L, LIU H, XIAO Y, et al. Biocementation of calcareous sand using soluble calcium derived from calcareous sand[J]. Bulletin of Engineering Geology & the Environment, 2017, 77(4):1781-1791. [33] PHUA Y J, ROYNE A. Bio-cementation through controlled dissolution and recrystallization of calcium carbonate[J]. Construction & Building Materials, 2018, 167:657-668. [34] YASUHARA H, NEUPANE D, HAYASHI K, et al. Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation[J]. Soils & Foundations, 2012, 52(3):539-549. [35] CARMONA J, OLIVEIRA P, LEMONS L, et al. Improvement of a sandy soil by enzymatic calcium carbonate precipitation[J].Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2017, 171(1):3-15. [36] HOANG T, ALLEMAN J, CETIN B, et al. Sand and silty-sand soil stabilizations using bacterial enzyme induced calcite precipitation (BEICP)[J]. Canadian Geotechnical Journal, 2018, 56(6):802-822. [37] CHENG L, SHAHIN M A, CHU J, et al. Soil bio-cementation using a new one-phase low-pH injection method[J]. Acta Geotechnica, 2019, 14(3):615-626. [38] OLIVEIRA P, FREITAS L D, CARMONA J. Effect of soil type on the enzymatic calcium carbonate precipitation process used for soil improvement[J]. Journal of Materials in Civil Engineering, 2016, 29(4):1-7. [39] ALMAJED A, TIRKOLAEI H K, KAVAZANJIAN E, et al. Enzyme induced biocementated sand with high strength at low carbonate content[J]. Scientific Reports, 2019,9:1-7. [40] 梁仕华,牛九格,房采杏,等. 微生物固化砂土的研究进展[J]. 工业建筑,2018,48(7):1-9. [41] DEJONG J T, MORTENSEN B M, Martinez B C, et al. Bio-mediated soil improvement[J]. Ecological Engineering, 2010, 36(2):197-210. [42] ARAB M G, ROHY H, ZEIADA W, et al. One-phase EICP biotreatment of sand exposed to various environmental conditions[J]. Journal of Materials in Civil Engineering, 2021, 33(3):1-12. [43] SIMATUPANG M, OKAMURA M. Liquefaction resistance of sand remediated with carbonate precipitation at different degrees of saturation during curing[J]. Soils and Foundations, 2017, 55(4):619-631. [44] MARTINEZ A, HUANG L, GOMEZ M G. Thermal conductivity of MICP-treated sands at varying degrees of saturation[J]. Geotechnique Letters, 2019, 9(1):15-21. [45] CHENG L, C-RUWISCH R, SHAHIN M A. Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation[J]. Canadian Geotechnical Journal, 2013, 50(1):81-90. [46] PAASSEN L, GHOSE R, LINDEN T, et al. Quantifying biomediated ground improvement by ureolysis:large-scale bi-ogrout experiment[J]. Journal of Geotechnical & Geoenvironme-ntal Engineering, 2010, 136(12):1721-1728. [47] ALOTAIBI E, ARAB M, ABDALLAH M, et al. Life cycle assessment of biocemented sands using enzyme induced carbonate precipitation (EICP) for ground improvement applications[J]. 2021, 12(1). DOI: 10.21203/rs.3rs-862874. [48] BLAKELEY R L, ZERNER B. Jack bean urease:the first nickel enzyme[J]. Journal of Molecular Catalysis, 1984, 23:263-292. [49] ALMAJED A, ABBAS H, ARAB M, et al. Enzyme-induced carbonate precipitation (EICP):based methods for ecofriendly stabilization of different types of natural sands[J]. Journal of Cleaner Production, 2020, 274:1-13. [50] SUN X H, MIAO L C, CHEN R F. Effects of different clay's percentages on improvement of sand-clay mixtures with microbially induced calcite precipitation[J]. Geomicrobiology, 2019(3):1-9. [51] HANDAN N, KAVAZANJIAN E J. Enzyme-induced carbonate mineral precipitation for fugitive dust control[J]. Géotechnique, 2016, 66(7):1-10. [52] 蒋耀东,黄娟,张雷,等. 基于脲酶诱导碳酸钙沉淀的新型扬尘抑制剂[J]. 环境工程学报,2017,11(9):5097-5103. [53] 吴敏,高玉峰,何稼,等. 大豆脲酶诱导碳酸钙沉积与黄原胶联合防风固沙室内试验研究[J]. 岩土工程学报,2020,42(10):1914-1921. [54] SUN X H, MING L C, WANG H X, et al. Enzymatic calcifi-cation to solidify desert sands for sandstorm control[J]. Climate Risk Management, 2021, 33:1-9.
点击查看大图
计量
- 文章访问数: 193
- HTML全文浏览量: 17
- PDF下载量: 3
- 被引次数: 0