Multi-Scale Finite Element Model Update Method Based on a Multi-Objective Evolutionary Algorithm
-
摘要: 确定大跨桥梁当前状态,明确各关键部位的受力特性,是评估其性能退化及剩余寿命的前提。采用Kriging元模型建立了大跨度桥梁多尺度的代理模型,并使用多目标进化算法和演化控制算法,建立了大跨桥梁模型更新方法。以典型的某大跨度斜拉桥为例,建立大跨度斜拉桥多尺度有限元模型,全局模型整体结构采用梁单元、局部采用板壳单元,通过使用多点约束方法(MPC)满足边界条件。以健康监测系统实测数据为基础,对模型自振频率、位移响应和应力响应进行修正。结果表明:采用多目标进化算法得出的全局和局部指标修正结果与实测数据均吻合较好,相较于初始有限元计算值,自振频率平均相对误差降低了3.38%,位移响应平均相对误差降低了10%,应力响应平均相对误差降低了5%。总体而言,采用Kriging元模型和多目标进化算法可实现大跨桥梁多尺度模型的修正和更新。
-
关键词:
- 大跨度桥梁 /
- 多尺度有限元模型修正 /
- Kriging元模型 /
- R2-MOEA多目标优化 /
- 演化控制
Abstract: Determining the current state of long-span bridges and clarifying the force characteristics of key parts are the prerequisites for evaluating their performance degradation and remaining life. A multi-scale surrogate model for long-span bridges was established by using the Kriging metamodel, and a large-span bridge model update method was developed by using a multi-objective evolutionary algorithm and an evolutionary control algorithm. Taking a typical long-span cable-stayed bridge as an example, a multi-scale finite element model of the long-span cable-stayed bridge was established. The overall structure of the global model adopted beam elements and local shell elements, and the boundary conditions were satisfied by using the multi-point constraint method (MPC). Based on the measured data of the health monitoring system, the natural vibration frequency, displacement response and stress response of the model were corrected, and the corrected influence line was obtained. The results showed that the global and local index correction results obtained by the multi-objective evolutionary algorithm were in good agreement with the measured data. Compared with the initial finite element calculation values, the average relative error of the natural frequency was reduced by 3.38%, and the average relative error of the displacement response was relatively high. The error was reduced by 10% and the average relative error of the stress response was reduced by 5%. In general, the Kriging metamodel and the multi-objective evolutionary algorithm could be used to correct and update the multi-scale model of long-span bridges. -
[1] 张皓, 李东升, 李宏男. 有限元模型修正研究进展:从线性到非线性[J]. 力学进展, 2019, 49(1):542-575. [2] 刘信, 何沛祥. 基于权函数的桥梁结构有限元模型修正[J]. 工业建筑, 2018, 48(2):95-99,68. [3] 《中国公路学报》编辑部.中国桥梁工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(2):1-97. [4] 马印平, 刘永健, 刘江. 基于响应面法的钢管混凝土组合桁梁桥多尺度有限元模型修正[J]. 中国公路学报, 2019, 32(11):51-61. [5] 方志, 张国刚, 唐盛华, 等. 混凝土斜拉桥动力有限元建模与模型修正[J]. 中国公路学报, 2013, 26(3):77-85. [6] WANG D, TAN D, LIU L. Particle swarm optimization algorithm:an overview[J]. Soft Computing, 2018, 22(2):387-408. [7] 金正凯, 卜一之, 李俊, 等. 基于Kriging方法的正交异性钢桥面板大焊脚焊缝抗疲劳构造参数设计[J]. 中外公路, 2017, 37(6):166-170. [8] 唐煜, 岳杰, 华旭刚. 基于人工蜂群算法的桥梁有限元模型局部刚度修正[J]. 铁道科学与工程学报, 2021, 18(9):2333-2343. [9] HA-SANÇEBI O, DUMLUPINAR T. Linear and nonlinear model updating of reinforced concrete T-beam bridges using artificial neural networks[J]. Computers and Structures, 2013, 119:1-11. [10] 王蕾, 郁胜, 李宾宾, 等. 基于径向基神经网络的桥梁有限元模型修正[J]. 土木工程学报, 2012, 45(增刊2):11-15. [11] ZHANG QING, LI HUI. MOEA/D:A multi-objective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6):712-731. [12] 马永杰, 陈敏, 龚影, 等. 动态多目标优化进化算法研究进展[J]. 自动化学报, 2020, 46(11):2302-2318. [13] 彭涛, 田仲初, 张建仁, 等. 基于多目标优化的混凝土斜拉桥静动力有限元模型修正[J]. 振动与冲击, 2018, 37(21):108-116. [14] 贾布裕, 余晓琳, 颜全胜, 等. 基于Kriging改进响应面法的桥梁地震动力可靠度研究[J]. 振动与冲击, 2013, 32(16):82-87,105. [15] SIMPSON T W, POPLINSKI J D, KOCH P N, et al. Metamodels for computer-based engineering design:survey and recom-mendations[J]. Engineering with Computers, 2001, 17(2):129-150. [16] CHEN R, LI K, YAO X. Dynamic multiobjectives optimization with a changing number of objectives[J]. IEEE Transactions on Evolutionary Computation, 2017, 22(1):157-171. [17] MING F, GONG W, ZHEN H, et al. A simple two-stage evolutionary algorithm for constrained multi-objective optimization[J/OL]. Knowledge-Based Systems, 2021, 228[2022-06-13].https://www.sciencedirect.com/science/article/abs/pii/S0950705121005256. [18] LIU R, LI N, WANG F. Noisy multi-objective optimization algorithm based on gaussian model and regularity model[J/OL]. Swarm and Evolutionary Computation, 2022, 69[2022-06-13].https://www.sciencedirect.com/science/article/abs/pii/S2210650221001899. [19] GAO Y, YE J, YUAN Z Y, et al. Optimization strategy for curing ultra-thick composite laminates based on multi-objective genetic algorithm[J/OL]. Composites Communications, 2022, 31[2022-06-13]. https://www.sciencedirect.com/science/article/abs/pii/S2452213922000572. [20] BROCKHOFF D, WAGNER T, TRAUTMANN H. 2 indicator-based multiobjective search[J]. Evolutionary Computation, 2015, 23(3):369-395. [21] LIM D, JIN Y, ONG Y S, et al. Generalizing surrogate-assisted evolutionary computation[J]. IEEE Transactions on Evolutionary Computation, 2009, 14(3):329-355.
点击查看大图
计量
- 文章访问数: 117
- HTML全文浏览量: 22
- PDF下载量: 7
- 被引次数: 0