Prediction and Analysis for Time Limits of Prestress Loss Based on Genetic Algorithms
-
摘要: 混凝土的收缩、徐变和预应力筋的松弛,会引起预应力损失,进而影响预应力混凝土结构的长期使用性能。按现有技术标准得到的预应力长期损失计算值与实际测量值有较大差别,故提出一种基于多种群遗传算法对预应力长期损失进行参数反演和预测的方法。采用该方法对影响JTG 3362—2018《公路钢筋混凝土及预应力混凝土桥涵设计规范》和ACI 209—1992《混凝土结构中徐变、收缩和温度效应的预测》中对预应力长期损失计算结果的参数敏感性进行分析,并利用多种群遗传算法对敏感参数进行了反演,得到了与预应力长期损失实测值较为吻合的损失曲线,同时验证了该方法的可行性和准确性,并预测出张拉30 a后,采用JTG 3362—2018和ACI 209—1992计算的预应力长期损失分别为9.5%和9.2%。Abstract: Shrinkage and creep of concrete, and relaxation of prestressed tendons will cause loss of prestress, and which then affect long-term performances of prestressed concrete structures. The calculated values of long-term prestress loss obtained according to existing specifications are quite different from actual measured values, therefore, a inversion and prediction method for parameters of long-term prestress loss based on the multi-population genetic algorithm was proposed. The method was used to analyze parameter sensitivity to influence calculation results of long-term prestress loss by methods of specificetions of JTG 3362-2018 and ACI 209-1992. A loss curve in good agreement with measureng values of long-term prestress loss was obtained through inversion analysis for sensitive parameters by the muti-population genetic algorithan, which verified the feasibility and accuracy of the method. Simul taneously, the long-term prestress loss subjected to tensioning for 30 years calculated by the above two specifications was predicted respectiverly, which were 9.5% and 9.2%.
-
[1] 卞爱红.预应力混凝土技术优势及其在工业与民用建筑施工中的应用[J].建筑技术开发,2021,48(20):67-68. [2] 傅旭.建筑工程项目预应力混凝土技术的应用探析[J].中国设备工程,2021,(22):222-223. [3] 卢志芳,刘沐宇.一种混凝土结构长期预应力损失计算方法[J].武汉理工大学学报,2011,33(7):83-87. [4] 潘立本,陈蓓.用分段逼近法计算混凝土收缩与徐变引起的构件预应力损失[J].工程力学,1998(4):123-126. [5] 方志,汪剑.预应力混凝土箱梁桥竖向预应力损失的实测与分析[J].土木工程学报,2006(5):78-84. [6] 覃荷瑛,韦健全.基于内嵌式自感知钢绞线的预应力混凝土梁长期预应力损失监测[J].铁道建筑,2021,61(9):12-17. [7] 刘婷,薛伟辰,王巍.全预应力混凝土梁长期变形计算[J]. 工程力学,2016,33(9):116-122. [8] 中华人民共和国交通运输部.公路钢筋混凝土及预应力混凝土桥涵设计规范:JTG 3362-2018[S].北京:人民交通出版社股份有限公司,2018. [9] ACI Committee 209.Prediction of creep, shrinkage and temperature effects in concrete structures[S]. Detroit:ACI, 1992. [10] 未建广,汪君,杨林,等. 核电站有黏结预应力钢束预应力损失的监测技术研究[J]. 工业建筑,2009,39(增刊1):537-540+558. [11] FRANCOS A. Sensitivity analysis of distributed environmental simulation models:understanding the model behaviour in hydrological studies at the catchment scale[J].Reliability Engineering and System Safty, 2003,79(2):205-218. [12] ZADOR J, ZSELY I G, TURANYI T. Local and global uncertainty analysis of complex chemical kinetic systems[J]. Reliability Engineering System Safety, 2006, 91:1232-1240. [13] 郝芳华,任希岩,张雪松,等.洛河流域非点源污染负荷不确定性的影响因素[J]. 中国环境科学, 2004,24(3):270-274. [14] 郝芳华.流域非点源污染分布式模拟研究[D].北京:北京师范大学,2003. [15] LENHART L, ECKHARDT K, FOHRER N, et al. Comparison of two different approaches of sensitivity analysis[J]. Physics and Chemistry of the Earth, 2002,27:645-654. [16] 周明, 孙树栋. 遗传算法原理及应用[M]. 北京:国防工业出版社, 1999. [17] POTTS J C, GIDDENS T D, YADAV S B. The development and evaluation of an improved genetic algorithm based on migration and artificial selection[J]. IEEE Transactions on Systems Man & Cybernetics, 1994, 24(1):73-86. [18] 迟世春, 朱叶. 面板堆石坝瞬时变形和流变变形参数的联合反演[J]. 水利学报, 2016, 47(1):18-27.
点击查看大图
计量
- 文章访问数: 98
- HTML全文浏览量: 20
- PDF下载量: 1
- 被引次数: 0