Analysis on Effect Factors and Characteristics of Shear Properties for Interfaces Between Basalt and Concrete
-
摘要: 为研究玄武岩-混凝土界面抗剪性能的影响因素及特征,设计了一种用于测试该性能的试验装置。采用同一场地的玄武岩和C20、C30混凝土试件,开展30组试件岩-混柱形的界面室内模型剪切试验。根据试验获得的荷载-位移曲线,确定极限抗剪承载力,并计算获得了界面抗剪强度平均值。将试验结果归一化处理后,研究了接触面尺度因素、混凝土设计强度等级和龄期、岩石完整性对界面抗剪性能的影响。试验结果表明:该装置能够有效模拟并试验测试岩石与混凝土界面的抗剪性能;接触面积与模型剪切承载力呈正相关,但与剪切面的高度或直径相关性不大,岩样高度越大则强度试验统计变异系数越小;90%置信概率下,混凝土养护7 d后,混凝土设计强度等级与界面抗剪强度变化不明显;混凝土龄期不大于7 d时其对界面强度有一定的正向影响,龄期增大可降低剪切强度时的极限位移;岩石完整性越好,则岩石与混凝土界面抗剪强度越高。
-
关键词:
- 玄武岩-混凝土接触面 /
- 剪切性能 /
- 影响因素 /
- 模型试验
Abstract: In order to study effect factors and characteristics of shear properties for interfaces between basalt and concrete, a test device for testing properties was designed. Using basalt and C20 and C30 concrete from the same site, 30 indoor specimens for shear tests of rock-concrete interface were conducted. According to the load-displacement curve obtained by the test, the ultimate shear bearing capacity was determined, and the mean value of the interface shear strength was calculated. After normalizing the test results, the effects of interface scales, strength grades and curing ages of concrete, and rock integrity on shear properties of interfaces were studied. The test results showed that the device could effectively simulate and measure the shear properties of interfaces between rock and concrete; the shear capacity of specimens was strongly positive correlative with contact areas, but was not obvious correlative with height or diameter of shear planes. The statistical coefficient of variation for measured strength values increased with the decrease in height of the rock specimens; after the curing age for 7 days,the design strength grade of concrete had an inapparent effect on the interface shear strength under 90% confidence probability; when the curing age of concrete was more than 7 days, the increase in curing age had a positive effect on the interface strength,the longer the curing age of concrete was, the smaller the displacement at the shear strength was. The more intact the rock was, the higher the shear strength of interfaces between rock and concrete was.-
Key words:
- basalt-concrete interface /
- shear performance /
- influencing factor /
- model test
-
[1] 郑卫锋,鲁先龙,程永锋,等.输电线路岩石锚杆基础工程临界锚固长度的研究[J].电力建设,2009,30(9):12-14. [2] 丁士君,鲁先龙.输电线路岩石锚杆基础载荷试验[J].电力建设,2010, 31(11):1-5. [3] 郑卫锋,鲁先龙,程永锋,等.输电线路岩石锚杆基础试验研究[J].工程勘察, 2010,38(1):5-8. [4] 侯中伟,郑卫锋.特高压输电线路岩石锚杆基础选型与设计[J].电力建设, 2014, 35(10):64-68. [5] 李才华,窦鹏冲.输电线路岩石锚杆基础抗拔试验分析[J].武汉大学学报(工学版), 2020, 53(增刊1):116-120. [6] 郑卫锋,张天光,陈大斌,等.我国输电线路基础工程现状与研究新进展[J].水利与建筑工程学报, 2020, 18(2):169-175. [7] DONG W, WU Z, ZHOU X, et al. An experimental study on crack propagation at rock-concrete interface using digital image correlation technique[J]. Engineering Fracture Mechanics, 2017, 171:50-63. [8] TIAN H, CHEN W, YANG D, et al. Experimental and numerical analysis of the shear behaviour of cemented concrete-rock joints[J]. Rock Mechanics and Rock Engineering, 2015, 48(1):213-222. [9] ZHONG H, OOI E, SONG C, et al. Experimental and numerical study of the dependency of interface fracture in concrete-rock specimens on mode mixity[J]. Engineering Fracture Mechanics, 2014, 124:287-309. [10] KROUNIS A, JOHANSSON F, LARSSON S. Shear strength of partially bonded concrete-rock interfaces for application in dam stability analyses[J]. Rock Mechanics and Rock Engineering, 2016, 49(7):2711-2722. [11] SAIANG D, MALMGREN L, NORDLUND E. Laboratory tests on shotcrete-rock joints in direct shear, tension and compression[J]. Rock Mechanics and Rock Engineering, 2005, 38(4):275-297. [12] RAO G A, RAGHU PRASAD B. Influence of type of aggregate and surface roughness on the interface fracture properties[J]. Materials and Structures, 2004, 37(5):328-334. [13] CALISKAN S, KARIHALOO B L, BARR B. Study of rock-mortar interfaces:part II:strength of interface[J]. Magazine of Concrete Research, 2002, 54(6):463-472. [14] YANG S, SONG L I, LI Z H E, et al. Experimental investigation on fracture toughness of interface crack for rock/concrete[J]. International Journal of Modern Physics B, 2008, 22(31/32):6141-6148. [15] KISHEN J M C, SAOUMA V E. Fracture of rock-concrete interfaces:laboratory tests and applications[J]. Structural Journal, 2004, 101(3):325-331. [16] SUJATHA V, KISHEN J M C. Energy release rate due to friction at bimaterial interface in dams[J]. Journal of Engineering Mechanics, 2003, 129(7):793-800. [17] SLOWIK V, KISHEN J M C, SAOUMA V E. Mixed mode fracture of cementitious bimaterial interfaces:Part I:Experimental results[J]. Engineering Fracture Mechanics, 1998, 60(1):83-94. [18] 王保田,朱珍德,张福海,等.花岗岩与混凝土胶结面抗剪强度的试验研究[J].岩土力学, 2004, 25(11):1717-1721. [19] 林伟平,田开圣,曾广平.影响混凝土与基岩胶结面抗剪强度的主要因素研究[J].水利学报, 1985(10):8-17. [20] 郭立湘,童根树.方、矩形钢管混凝土试件界面抗剪强度及横隔板的作用分析[J].工业建筑, 2015,45(6):154-159. [21] BUYUKOZTURK O, HEARING B. Crack propagation in concrete composites influenced by interface fracture parameters[J]. International Journal of Solids and Structures, 1998, 35(31/32):4055-4066. [22] LEE K M, BUYUKOZTURK O. Fracture toughness of mortar-aggregate interface in high-strength concrete[J]. Materials Journal, 1995, 92(6):634-642. [23] LEE Y H, CARR J R, BARR C J, et al. The fractal dimension as a measure of the roughness of rock discontinuity profiles[J]. The International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts, 1990,27(6):453-464. [24] 俞纯权.不等次数重复试验双因素方差分析的应用[J].统计教育,1996(3):42-43.
点击查看大图
计量
- 文章访问数: 82
- HTML全文浏览量: 20
- PDF下载量: 1
- 被引次数: 0