Experimental Study on Physical and Mechanical Properties and Frost Resistance of EPS Cement-Based Composites with Corn Husk Fiber
-
摘要: 将不同质量分数的玉米皮纤维与不同质量分数的聚苯乙烯泡沫(EPS)颗粒复掺并添加到水泥基体中,研究玉米皮纤维EPS水泥基复合材料的密度、吸水率、抗压强度、抗折强度、劈裂抗拉强度以及抗冻性能。研究结果表明:玉米皮纤维的掺量越高,水泥基复合材料密度越低,但吸水率越高;水泥基复合材料抗压强度随着纤维掺量和EPS掺量的增加而降低,最大抗压强度为2.2 MPa,最小为0.8 MPa;EPS水泥基复合材料抗折强度随纤维掺量的增加先增大后减小,其中在纤维掺量为3%、EPS掺量为1.3%时,抗折强度最大为1.2 MPa;劈裂抗拉强度随纤维掺量的增加而增加,随EPS掺量的增加而减小,其中在纤维掺量在3%,EPS掺量在1.1%时劈裂抗拉强度最高为1.1 MPa。并且添加玉米皮纤维能够有效减少复合材料质量损失和强度损失,提高其抗冻性能。
-
关键词:
- 玉米皮纤维 /
- 聚苯乙烯泡沫水泥基复合材料 /
- 力学性能 /
- 抗冻性能 /
- 微观结构
Abstract: The corn husk fibers with different mass fraction and expanded polystyrene (EPS) particles were mixed and added to the cement matrix to study their effects on the density, water absorption, compressive strength, flexural strength, splitting tensile strength and frost resistance of the composites. The results showed that the higher the content of corn skin plant fiber, the lower the density and the higher the water absorption of EPS cement-based composites; the compressive strength decreases with the increase of fiber content and EPS content, and the maximum compressive strength is 2.2 MPa and the minimum is 0.8 MPa; the flexural strength increases first and then decreases with the increase of fiber content, and when the fiber content is 3%, EPS content is 1.3%, the maximum flexural strength is 1.2 MPa; the splitting tensile strength increases with the increase of fiber content and decreases with the increase of EPS content, and when the fiber content is 3%, EPS content is 1.1%, and the highest splitting tensile strength is 1.1 MPa. What’s more, the addition of corn bran fiber can effectively reduce the mass loss and strength loss of the composite and improve its frost resistance.-
Key words:
- corn husk fiber /
- EPS cement-based composites /
- mechanical property /
- frost resistance /
- microstructure
-
[1] 张文华,吕毓静,刘鹏宇.EPS混凝土研究进展综述[J].材料导报, 2019,33(13):2214-2228. [2] 陈继浩,崔琪,潘华.秸秆复合墙板应用性能试验研究[J].新型建筑材料,2021,48(4):92-94. [3] MOMOH E O, OSOFERO A I. Behaviour of oil palm broom fibres (OPBF) reinforced concrete[J]. Construction and Building Materials, 2019, 221: 745-761. [4] AFROZ M, VENKATESAN S, PATNAIKUNI I. Effects of hybrid fibers on the development of high volume fly ash cement composite[J]. Construction and Building Materials, 2019, 215: 984-997. [5] 李碧雄,汪知文,苏柳月,等.减小EPS混凝土收缩的配合工艺试验研究[J].材料导报,2021,35(16):16021-16027. [6] 蔡丽朋.用再生聚苯颗粒生产新型墙体材料的研究[J].新型建筑材料,2014,41(3):78-80. [7] 邓志恒,梁倚,黄华秋.再生混凝土掺聚苯颗粒空心砌块性能试验研究[J].混凝土,2016(10):135-138. [8] MERTA I, TSCHEGG E K. Fracture energy of natural fibre reinforced concrete[J]. Construction and Building Materials, 2013, 40: 991-997. [9] COOK D J. Expanded polystyrene beads as lightweight aggregate for concrete[J].Precast Concrete,1973,4(4): 691-693. [10] BABAVALIAN A, RANJBARAN A H, SHAHBEYK S. Uniaxial and triaxial failure strength of fiber reinforced EPS concrete[J]. Construction and Building Materials, 2020, 247[2022-05-24].https://doi.org/10.1016/j.conbuildmat.2020.118617. [11] 陈兵,涂思炎,翁友法.EPS轻质混凝土性能研究[J].建筑材料学报,2007(1):26-31. [12] 刘嫄春,张令心,侯为军,等.掺入聚丙烯纤维的EPS混凝土试验研究[J].混凝土与水泥制品,2012(11):43-45. [13] 刘嫄春,张令心,战佳朋,等.EPS轻质混凝土强度模型[J].混凝土,2013(2):36-37,45. [14] ANDIÇ-ÇAKIR Ö, SARIKANAT M, TVFEKÇI H B, et al. Physical and mechanical properties of randomly oriented coir fiber-cementitious composites[J]. Composites Part B: Engineering, 2014, 61: 49-54. [15] ASTUTININGSIH S, SURA W, ZAKIYUDDIN A. Comparison of the compressive strength and the microstructure of metakaolin metastar and metakaolin bangka as additive in ordinary portland cement[C]//E3S Web of Conferences. 2018. [16] 蒋林华,刘振清,叶义群.大掺量Ⅲ级粉煤灰混凝土耐久性研究[J].建筑材料学报,2004(3):328-331. [17] 邢洁,于蕾.混凝土孔结构填充材料的选择及适用性分析[J].新型建筑材料,2020,47(6):51-55. [18] 郭垂根,韩福芹,邵博,等.稻草增强水泥基复合材料的研究[J].混凝土与水泥制品,2008(1):38-40. [19] 白诗淇.植物纤维混凝土性能研究[J].中国新技术新产品,2020(24):73-75. [20] 李碧雄,廖桥,吴瑾炎.新型秸秆纤维混凝土实心砖的性能试验研究[J].工程科学与技术,2018,50(5):216-223. [21] LONG W, WANG Y. Effect of pine needle fibre reinforcement on the mechanical properties of concrete[J/OL]. Construction and Building Materials, 2021, 278[2022-05-24].https://doi.org/10.1016/j.conbuildmat.2021.122333. [22] 蹇守卫,汪婷,马保国,等.改性水稻秸秆对水泥基材料性能影响研究[J].材料导报,2014,28(6):132-135. [23] MELKAMU A, KAHSAY M B, TESFAY A G. Mechanical and water-absorption properties of sisal fiber (Agave sisalana)-reinforced polyester composite[J]. Journal of Natural Fibers, 2019, 16(6): 877-885. [24] HWANG C L, TRAN V A, HONG J W, et al. Effects of short coconut fiber on the mechanical properties, plastic cracking behavior, and impact resistance of cementitious composites[J]. Construction and Building Materials, 2016, 127: 984-992. [25] 梅利芳,徐光黎.纤维聚苯乙烯泡沫颗粒轻质土的制备及力学性能[J].复合材料学报,2016,33(10):2355-2362. [26] THANUSHAN K, YOGANANTH Y, SANGEETH P, et al. Strength and durability characteristics of coconut fibre reinforced earth cement blocks[J]. Journal of Natural Fibers, 2021, 18(6): 773-788. [27] MACHAKA M, BASHA H, ABOU CHAKRA H, et al. Alkali treatment of fan palm natural fibers for use in fiber reinforced concrete[J]. European Scientific Journal, 2014, 10(12):186-195. [28] ÇOMAK B, BIDECI A, BIDECI Ö S. Effects of hemp fibers on characteristics of cement based mortar[J]. Construction and Building Materials, 2018, 169: 794-799.
点击查看大图
计量
- 文章访问数: 57
- HTML全文浏览量: 5
- PDF下载量: 1
- 被引次数: 0