Experimental Research on Corrosion Characteristics of Steel Trestles in Marine Environment and Its Stability Bearing Capacity Analysis
-
摘要: 依托平潭海峡公铁两用大桥钢栈桥,对深水裸岩区钢管桩的腐蚀现状进行深入研究。首先对腐蚀钢材进行现场取样,测定其表面腐蚀形态,并基于蚀坑深度分布规律将腐蚀钢管简化为阶梯柱模型进行力学分析,最后基于超景深试验结果建立精细化有限元模型来分析腐蚀钢管的轴压稳定承载力。研究结果表明:海洋环境中腐蚀后的钢管桩呈现非均匀腐蚀状态,浪溅区最大腐蚀深度可为全浸区的5倍;钢管桩可简化为变截面阶梯柱力学模型,提出了变截面柱相对高度计算公式;阶梯柱可作为简化模型用于腐蚀钢管桩的稳定承载力分析,对腐蚀钢栈桥未来的工作性能研究提供参考。Abstract: Based on the steel trestle of Pingtan Straits Rail-cum-Road Bridge, the corrosion status of the steel pipe piles in the deep water-bare rock area was investigated. Firstly, the steel plates under corrosion were sampled on site, and the surface morphology of the steel plates was measured, and then the steel pipe piles were simplified into the stepped columns for analysis according to the depth distribution of steel pit corrosion. Finally, the refined finite element model considering the pit corrosion was established based on the field test results, and the stability bearing capacity of the corroded steel pipe piles was analyzed. The results showed that a non-uniform corrosion distribution along the column height could be observed on the corroded steel pipe piles in the marine environment, and the maximum corrosion depth in the splash zone could be 5 times of that in the full immersion zone. The steel pipe piles could be simplified as the stepped columns with variable cross-section, and the formula for calculating the effective length of stepped columns was proposed. The finite element model of stepped columns could be used as the simplified model to analyze the stability bearing capacity of corroded steel pipe piles, which could provide a reference for the future research on the working performance of corroded steel trestles.
-
[1] 遆子龙,李永乐,秦顺全,等.海洋桥梁施工围堰的波浪压力实测与数值模拟[J].西南交通大学学报,2017,52(3):466-473,531. [2] 覃勇刚. 杭州湾跨海大桥南岸超长栈桥设计研究[D].南京:东南大学,2006. [3] GOLAFSHANI A A, BA GHERI V, EBRAHIMIAN H, et al. Incremental wave analysis and its application to performance-based assessment of jacket platforms[J]. Journal of Constructional Steel Research, 2011, 67(10):1649-1657. [4] 王东辉,胡雄伟.平潭海峡公铁两用大桥深水区栈桥下部结构设计[J].铁道标准设计,2015,59(10):76-80. [5] 马晓东.平潭海峡公铁两用大桥总体施工方案[J].桥梁建设,2017,47(2):1-6. [6] 王东辉.平潭海峡公铁两用大桥非通航孔引桥围堰设计与施工[J].桥梁建设,2016,46(3):1-5. [7] 李淑英, 张振邦, 杨艳,等.大连港钢栈桥腐蚀状况监测及涂层维修方案研究[J].腐蚀与防护,1999, 20(7):327-329. [8] 侯保荣. 海洋腐蚀与防护[M].北京:科学出版社, 1997. [9] 魏宝明. 金属腐蚀理论及应用[M]. 北京:化学工业出版社, 1984. [10] 朱相荣, 黄桂桥. 钢在海洋飞溅带腐蚀行为探讨[J]. 腐蚀科学与防护技术, 1995, 7(3):246-248. [11] 李芳. 北大桥钢结构桥梁腐蚀防护[J]. 全面腐蚀控制, 2005, 19(3):42-44. [12] 李秉忠,董志红, 张海成,等. 琴台月湖月影舞台栈桥钢结构环境腐蚀调查及失效分析[C]//第七届全国表面工程学术会议暨第二届表面工程青年学术论坛论文集(一).武汉:中国机械工程表面工程分会, 2008:291-293. [13] 中华人民共和国交通部.海港工程钢结构防腐蚀技术规范:JTS 153-3-2007[S].北京:中国建筑工业出版社,2007. [14] 侯保荣, 西方笃. 钢材在海水-海气交换界面区的腐蚀行为[J]. 海洋与湖沼, 1995, 26(5):514-519. [15] 朱相荣, 黄桂桥. 钢材海洋飞溅区的腐蚀行为探讨[J]. 腐蚀科学与防护与技术, 1995(7):246-248. [16] 李言涛,李延旭.低合金钢在海洋各腐蚀区带的锈层研究[J].海洋与湖沼, 1998, 29(6):651-655. [17] NEVES R, BRANCO F, DE BRITO J. About the statistical interpretation of air permeability assessment results[J]. Materials and Structures, 2012, 45(4):529-539. [18] 中华人民共和国住房和城乡建设部.钢结构设计标准:GB 50017-2017[S].北京:中国建筑工业出版社,2018.
点击查看大图
计量
- 文章访问数: 106
- HTML全文浏览量: 14
- PDF下载量: 5
- 被引次数: 0