Research on Shape Coefficients of a High-Rise Multi-Tower Interconnected Structure Under Wind Load
-
摘要: 以珠海某高层多塔连体结构工程为例,研究高位连接复杂多塔结构表面的风压特征与体型系数分布,为此类结构的抗风设计提供计算依据,保障结构安全。采用CFD方法对高层多塔连体结构及周围干扰建筑进行数值风洞模拟,分析不同风向角工况下结构主表面及局部构造处的体形系数,并与物理风洞试验结果以及规范值进行比较。结构迎风面的体型系数一般呈现中间大两边小的分布,多塔楼之间存在互相干扰作用;裙房处可能存在体型系数绝对值较大的情况,斜向气流在相邻表面易形成较大风压;相比于物理风洞试验结果,数值风洞模拟的结果与荷载规范值更为接近,且分布相对更为均匀;不规则高位连接体凹面处会产生较大的体型系数,但对整体结构的体型系数影响有限。在抗风设计过程中,多塔楼间的干扰作用及不规则高位连接体的影响应予以考虑。Abstract: Taking a high-rise multi-tower interconnected structure in Zhuhai as an example, the surface wind pressure characteristics and shape coefficient distribution of complex high-connected multi-tower structures were studied, which could provide the calculation basis for the wind-resistant design of such structures to ensure the structural safety. CFD method was used to conduct numerical wind tunnel simulation of the high-rise multi-tower interconnected structure and surrounding disturbed buildings. The shape coefficients of main surfaces and local structures under different wind direction angles were analyzed, and compared with the physical wind tunnel test results and standard values of the load code. The shape coefficients of windward side of the structure was generally large in the middle and small on both sides, and there was interaction between multiple towers. On the podium, the larger absolute value of shape coefficients might be exist, and the oblique flow was easy to form larger wind pressure on the adjacent surfaces. Compared with the physical wind tunnel test results, the numerical simulation results were closer to the values of the load code, and the distribution was relatively more uniform. The concave surface of the high-altitude irregular connector produced larger shape coefficients, however, the influence on the whole structure was limited. In the wind-resistant design process, the interference between multiple towers and the influence of high-altitude irregular connectors should be considered.
-
Key words:
- high-rise /
- multi-tower interconnected structure /
- wind load /
- shape coefficient /
- CFD
-
[1] 涂楠坤.考虑风向的两栋典型截面超高层建筑主体风荷载研究及规范值比较[J].建筑结构,2015,45(22):24-28. [2] 杨立国,严亚林,周一航. 高层建筑群风荷载干扰效应风洞试验研究[J]. 建筑科学,2019,35(7):66-71. [3] 李毅,李秋胜.某典型高层建筑表面风压分布特性及干扰效应试验研究[J].建筑结构,2014,44(2):87-92. [4] 周凯旋.基于异形复杂高层项目的数值风洞研究[D]. 广州:广东工业大学, 2016. [5] 毛璐璐,韩兆龙,周岱,等.典型形体超高层建筑的风压风场与抗风优化研究[J].振动与冲击,2019,38(18):215-222. [6] JENDZELOVSKY N, ANTAL R. CFD and experimental study of wind pressure distribution on the high-rise building in the shape of an equilateral acute triangle[J/OL]. Fluids, 2021, 6(2).[2022-04-28].https://www.mdpi.com/2311-5521/6/2/81. [7] XING Q, QIAN J. CFD analysis of wind interference effects of three high-rise buildings[J]. Journal of Asian Architecture and Building Engineering, 2018, 17(3):487-494. [8] 于丽波,罗敏.基于CFD不同湍流模型的超高层连体结构风荷载和流场对比研究[J].特种结构,2017,34(5):44-51. [9] 闫渤文,李大隆,鄢乔,等.城市中心高层双塔建筑风效应及风振响应数值模拟研究[J].振动与冲击,2020,39(20):223-231,250. [10] 柯世堂,王浩.超高层连体建筑风荷载干扰效应大涡模拟研究[J].湖南大学学报(自然科学版),2017,44(5):53-62. [11] 中华人民共和国住房和城乡建设部.建筑结构荷载规范:GB 50009-2012[S].北京:中国建筑工业出版社,2012. [12] 谢壮宁, 杨易, 石碧青, 等. 珠海铁建广场风荷载特性风洞试验数据图表-峰值风压(发展后周边)[R]. 广州:华南理工大学土木与交通学院, 2017. [13] 金新阳,杨伟,金海,等.数值风工程应用中湍流模型的比较研究[J].建筑科学,2006,22(5):1-5,28. [14] 梅凌云,吴杰,张宇峰.单体建筑及建筑群表面风压计算的湍流模型研究[J].建筑科学,2017,33(6):96-107. [15] MENTER F R. Zonal two equation k-ω turbulence models for aerodynamic flows[C]//24th Fluid Dynamics Conference, No. AIAA-93-2906. Orlando:Florida, 1993. [16] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. Aiaa Journal, 1994, 32(8):1598-1605.
点击查看大图
计量
- 文章访问数: 115
- HTML全文浏览量: 8
- PDF下载量: 4
- 被引次数: 0