Numerical Simulation Research on Demolition and Collapse of Space Truss Structures
-
摘要: 采用数值模拟ABAQUS隐式动力分析的方法对三种常见的平面桁架系网架:正交正放、正交斜放、三向网架和四种角锥系网架:单向折线形、正放四角锥、斜放四角锥和三角锥网架进行拆除倒塌研究。通过将平面桁架倒塌试验和深圳体育馆屋盖网架的实际拆除倒塌情况与数值模拟结果进行对比,验证了数值模拟的准确性。并采用杆件的敏感性分析方法计算结构杆件的重要性系数,确定了不同类型网架拆除中的重要杆件,并制定相应的拆除方案。网架拆除倒塌的研究表明,在拆除网架结构柱端既定的杆件群后,其剩余柱端杆件压应力增大,并发生受压失稳屈曲是导致网架发生竖向大变形的主要原因;网架向下倒塌至柱顶下侧时,柱端杆件转为受拉,并通过悬链线效应来传递竖向荷载,最终发生的强度破坏是导致网架发生整体倒塌的主要原因。Abstract: The implicit dynamic analysis by finite-element (FE) software ABAQUS was utilized to conduct numerical simulations on the demolition and collapse process of three common plane truss structures, namely, orthogonal, orthogonal diagonal, and three-dimensional space trusses, and four pyramid space trusses, i.e., one-way folding line, square pyramid, diagonal square pyramid, and triangular pyramid space trusses. The collapse test of the plane truss structure and the actual demolition and collapse situation of the roof space truss of Shenzhen Gymnasium were compared with the numerical simulations, which verified the accuracy of the numerical simulation. The sensitivity analysis of elements was made to calculate the importance factor of elements and determine the important elements in the demolition of different space trusses, and corresponding demolition plans were formulated. The research results show that after the fixed element group at the column ends of space truss structures is demolished, the compressive stress of the residual elements at the column ends is increased, and buckling instability caused by the compressive stress accounts for the large vertical deformation of the space truss. When the space truss falls down below the top of the column, the elements at the column ends are subjected to the tensile stress, and the catenary action in the truss provides an alternate way for the vertical load, which leads to the strength failure, the main reason for the overall collapse of the space truss.
-
[1] 董石麟. 我国大跨度空间钢结构的发展与展望[J]. 空间结构,2000(2):3-13. [2] 张毅刚,薛素铎,杨庆山,等. 大跨空间结构[M]. 2版.北京:机械工业出版社,2014. [3] 谢先启,刘军,贾永胜,等. 拆除爆破数值模拟研究进展[J]. 中国工程科学,2014,16(11):20-27. [4] KAEWKULCHAI G, WILLIAMSON E B. Beam element formula-tion and solution procedure for dynamic progressive collapse analysis[J]. Computers & Structures, 2004, 82(7/8):639-651. [5] HARTMANN D, BREIDT M, NGUYEN V, et al. Structural collapse simulation under consideration of uncertainty-fundamental concept and results[J]. Computers & Structures, 2008, 86(21/22):2064-2078. [6] Van JAARSVELDT W J, WALLS R S, Van der KLASHDRST E. Experimental testing and finite element modeling of steel columns weakened to facilitate building demolition[J]. International Journal of Steel Structures, 2018, 18(5):8-10. [7] 贾永胜. 大型结构拆除爆破倒塌过程的连续仿真[D]. 武汉:武汉理工大学,2010. [8] PIROGLU F, OZAKGUL K. Partial collapses experienced for a steel space truss roof structure induced by ice ponds[J]. Engineering Failure Analysis, 2016, 60:155-165. [9] MARTIN R, DELATETE N J. Another look at Hartford civic center coliseum collapse[J]. Journal of Performance of Constructed Facilities, 2001, 15(1):31-36. [10] 袁杨,陈忠范. 雪荷载下加油站罩棚倒塌事故分析及若干建议[J]. 江苏建筑,2009(1):34-36. [11] ZHAO X Z, YAN S, CHEN Y Y, et al. Experimental study on progressive collapse-resistant behavior of planar trusses[J]. Engineering Structures, 2017, 135:104-116. [12] 胡庆昌,郑琪,孙金墀. 建筑结构抗震减震与连续性倒塌控制[M]. 北京:中国建筑工业出版社,2007. [13] 汪毅俊,吴慧. 基于网架结构极限承载力的优化设计方法[J]. 空间结构,2010,16(3):34-40. [14] 丁北斗,吕恒林,李贤,等. 基于重要杆件失效网架结构连续倒塌动力试验研究[J]. 振动与冲击,2015,34(23):106-114. [15] 陈俊岭,李哲旭,舒文雅,等. 不同应变率下Q345钢材力学性能试验研究[J]. 东南大学学报(自然科学版),2015,45(6):1145-1150. [16] 中华人民共和国住房和城乡建设部. 空间网格结构技术规程:JGJ 7-2010[S]. 北京:中国建筑工业出版社,2011. [17] 蔡建国,王蜂岚,韩运龙,等. 大跨空间结构重要构件评估实用方法[J]. 湖南大学学报(自然科学版),2011,38(3):7-11.
点击查看大图
计量
- 文章访问数: 93
- HTML全文浏览量: 23
- PDF下载量: 4
- 被引次数: 0