Finite Element Parametric Analysis of Seismic Performance of Wide-Flange L-Shaped CFST Composite Columns with Built-in PBL
-
摘要: 为研究内置PBL的宽肢L形钢管混凝土组合柱(W-LCFST柱)抗震性能,基于已有试验结果,对内置PBL的L形钢管混凝土组合柱进行了数值模拟,考虑了钢材延性断裂失效的影响,模型结果可以很好地预测启裂点位置、开裂路径及荷载-位移曲线等。进一步对PBL隔板数量、PBL孔间距、PBL孔径大小、边柱尺寸、轴压比和钢管厚度等参数开展了对比分析,结果表明:PBL隔板数量从2个增加至6个后,提高了对核心混凝土的约束作用,位移延性系数提高了14.5%;PBL孔径大小和孔间距仅对塑性阶段有影响,达到峰值荷载前,孔径51 mm的PBL隔板容易在不利位置破坏而引起W-LCFST柱承载力降低,达到峰值荷载后,孔径17 mm的PBL隔板内的混凝土榫更容易受剪破坏,承载力下降较快;轴压比在0.25~0.55范围内,W-LCFST柱承载力先提高后下降;增加边柱尺寸和钢管厚度可以提高初始刚度和峰值承载力,边柱尺寸由100 mm×100 mm增大至140 mm×100 mm时,初始刚度提高了13.7%,钢管厚度从6 mm提升至8 mm后,正向峰值承载力提升了21.8%。Abstract: In order to study the seismic performance of the wide-flange L-shaped CFST composite column with built-in PBL (W-LCFST column), based on the existing test results, the numerical simulation of the L-shaped CFST composite column with built-in PBL was carried out, considering the ductile fracture failure of steel. The model results could well predict the location of the crack initiation point, the crack path and the load-displacement curve. Further comparison and analysis of parameters such as PBL separators quantity, PBL hole spacing, PBL hole size, side column size, axial compression ratio and steel pipe thickness were carried out. The results showed that when the number of PBL separators was increased from 2 to 6, the restraint effect on the core concrete was improved, and the displacement ductility coefficient was increased by 14.5%; the size of the PBL pore diameter and the spacing of the pores only affected the plastic stage. Before reaching the peak load, PBL partitions with a pore diameter of 51 mm were easily reduced in the unfavorable position and caused the W-LCFST pillar to be reduced. The concrete tenon in the PBL partition with a pore diameter of 17 mm was more likely to be cut and damaged, and the carrying capacity decreased rapidly; the axis pressure ratio was within the range of 0.25 to 0.55, and the bearing capacity of the W-LCFST column was increased first. The initial stiffness and the peak bearing capacity could be increased with the increase of the sizes of the edge column and the thickness of the steel pipe. When the sizes of the edge column increased from 100 mm×100 mm to 140 mm×100 mm, the initial stiffness increased by 13.7%. After the thickness of the steel pipe increased from 6 mm to 8 mm, the positive peak bearing capacity increased by 21.8%.
-
[1] 林震宇,沈祖炎,罗金辉. 反复荷载作用下L形钢管混凝土柱滞回性能研究[J]. 建筑钢结构进展,2009,11(2):12-17. [2] YANG Y L, WANG Y Y, FU F, et al. Static behavior of T-shaped concrete-filled steel tubular columns subjected to concentric and eccentric compressive loads [J]. Thin-Walled Structures, 2015(95):374-388. [3] TU Y Q, SHEN Y F, ZHENG Y G, et al. Hysteretic behavior of multi-cell T-shaped concrete-filled steel tubular columns [J]. Thin-Walled Structures, 2014(85):106-116. [4] 李桐亮,屠永清. L形多室式钢管混凝土短柱双向偏压性能研究[J]. 工业建筑,2018,48(5):156-161. [5] 胥民扬,陈志华,周婷,等. L形无孔钢板连接式方钢管混凝土组合异形柱长柱轴心受压极限承载力试验研究[J]. 工业建筑,2016,46(7):178-182,117. [6] XIONG Q Q, CHEN Z H, KANG J F, et al. Experimental and finite element study on seismic performance of the LCFST-D columns [J]. Journal of Constructional Steel Research, 2017 (137): 119-134. [7] 张继承,沈祖炎,周海军. L形钢管混凝土柱抗震性能非线性有限元分析[J]. 工业建筑,2010,40(7):85-90. [8] 宋华,杨远龙,刘界鹏. 对拉钢筋加劲L形截面钢管混凝土柱抗震性能研究[J]. 建筑结构学报,2017,38(增刊1):179-184. [9] 殷飞,董宏英,曹万林,等. 不同构造多腔钢管混凝土巨型柱抗震性能试验研究[J]. 建筑结构学报,2018,39(3):67-76. [10] 熊清清,张旺,陈志华. L形钢管混凝土组合柱抗震性能分析及水平承载力设计方法[J]. 科学技术与工程,2020,20(23):9521-9531. [11] 蔡景明,潘金龙,苏浩. 钢筋增强ECC-钢管混凝土组合柱抗震性能试验及其数值模拟[J]. 建筑结构学报,2020,41(7):55-62. [12] 中国工程建设标准化协会.矩形钢管混凝土结构技术规程:CECS 159∶2004[S].北京:中国计划出版社,2004. [13] 蔡健,左志亮,赵小芹,等. 带约束拉杆L形钢管混凝土短柱偏压试验研究[J]. 建筑结构学报,2011,32(2):83-90. [14] 蔡健,孙刚. 轴压下带约束拉杆L形钢管混凝土短柱的试验研究[J]. 土木工程学报,2008,41(9):14-20. [15] 刘永健,张宁,张俊光. PBL加劲型矩形钢管混凝土的力学性能[J]. 建筑科学与工程学报,2012,29(4):13-17. [16] 刘君平,周宗源,刘永健,等. 开孔钢板加劲肋方钢管混凝土柱偏压试验研究[J]. 建筑结构学报,2017,38(11):42-48. [17] 周绪红,刘永健,姜磊,等. PBL加劲型矩形钢管混凝土结构力学性能研究综述[J]. 中国公路学报,2017,30(11):45-62. [18] 周政,甘丹,周绪红. 斜拉肋加劲薄壁方钢管混凝土柱的滞回性能研究[J]. 土木工程学报,2021,54(6):14-25. [19] 中华人民共和国住房和城乡建设部. 建筑抗震试验规程:JGJ 101—2015[S]. 北京:中国建筑工业出版社,2015.[20]韩林海. 钢管混凝土结构:理论与实践[M]. 2版.北京:科学出版社,2007. [21]中华人民共和国住房和城乡建设部. 混凝土结构设计规范:GB 50010—2010[S]. 北京:中国建筑工业出版社,2010. [22]李威. 圆钢管混凝土柱-钢梁外环板式框架节点抗震性能研究[D]. 北京:清华大学,2011. [23]王元清,关阳,刘明,等. 基于钢材真实应力应变关系的研究[J]. 沈阳建筑大学学报(自然科学版),2018,34(6):961-970. [24]周天华,李文超,管宇,等. 基于应力三轴度的钢框架循环加载损伤分析[J]. 工程力学,2014,31(7):146-155. [25]石永久,王萌,王元清. 循环荷载作用下结构钢材本构关系试验研究[J]. 建筑材料学报,2012,15(3):293-300. [26]戴绍斌,谢军,黄俊,等. T形钢管混凝土柱-混凝土梁外加强环板式节点抗震性能正交试验研究[J]. 工业建筑,2017,47(7):141-148.
点击查看大图
计量
- 文章访问数: 127
- HTML全文浏览量: 8
- PDF下载量: 10
- 被引次数: 0