Fuzzy Comprehensive Evaluation Method for Safety of Concrete Frame Structures Based on AHP-Membership Theory
-
摘要: 现有规范、标准采用定性定量相结合的方法对混凝土框架结构的安全性进行评价,难以判定同安全等级结构的相对安全性。根据混凝土框架结构的受力特点,建立安全性评价层次模型,结合已有结构设计、检测、鉴定方面的规范标准,构建构件检查项目安全等级评价指标体系,基于隶属度函数理论建立检查项目综合评判矩阵,提出混凝土框架结构安全性三级模糊综合评价方法,设计主体结构安全性按现行鉴定标准评定为A、B、C和D级的工程算例,将分别采用本文方法、最大隶属度法和等级加权平均法进行结构安全性评价,并进行对比分析。研究结果表明:基于层次分析法(AHP)所建立的结构安全评价模型,能反映混凝土框架结构受力特点;采用德尔菲法确定因素重要程度模糊集,充分发挥专家集体智慧在评判中作用,能较好体现赋权公平性;以AHP层次模型、因素重要程度模糊集和构件检查项目综合评判矩阵为基础的模糊综合评价方法,可以量化评估混凝土框架结构安全性,与现行规范安全等级评定结果的吻合程度最高,构件层、子单元层和鉴定单元层的平均一致率分别为71.9%、91.7%和100%。Abstract: Existing codes and standards adopt qualitative and quantitative methods to assess the safety of concrete frame structures, which can hardly judge the relative safety of structures at the same safety level. According to the stress characteristics of concrete frame structures, this paper built a hierarchical safety assessment model, combined the existing codes and standards in structural design, testing, and identification to construct a safety grade evaluation index system for component inspection items, and established comprehensive evaluation matrices for inspection items on the basis of membership function theory. Moreover, it developed a three-level fuzzy comprehensive evaluation method for the safety of concrete frame structures. The engineering cases with the safety of the main design structure rated as A, B, C, and D according to the current identification standards were designed, and the structural safety was evaluated by the proposed method in this paper, the maximum membership degree method, and the weighted rank average method for comparative analysis. The research results show that the structural safety evaluation model based on the analytic hierarchy process (AHP) can reflect the stress characteristics of concrete frame structures. Using the Delphi method to determine the fuzzy sets of the importance of the factors can give full play to the collective wisdom of experts in the evaluation and can better reflect the fairness of empowerment. The fuzzy comprehensive evaluation method based on the AHP model, fuzzy sets of factor importance, and comprehensive evaluation matrices of component inspection items can quantitatively evaluate the safety of concrete frame structures. Moreover, its results can achieve the highest degree of coincidence with the safety grade evaluation results of current specifications, and the average consistency rates of the component layer, sub-unit layer, and appraisal unit layer are 71.9%, 91.7%, and 100%, respectively.
-
Key words:
- concrete /
- frame structures /
- safety assessment /
- analytic hierarchy process (AHP) /
- membership functions /
- fuzzy rules
-
[1] JIAO J, XIA Q L, SHI F. Nondestructive inspection of a brick-timber structure in a modern architectural heritage building:Lecture hall of the Anyuan Miners' Club, China[J]. Frontiers of Architectural Research, 2019, 8(3):348-358. [2] IX-ISO. Bases for design of structures:assessment of existing structures:ISO 13822-2010[S]. Geneva:McGraw-Hill,2010. [3] US-ASCE.Guideline for structural condition assessment of existing buildings:SEI/ASCE 11-99[S]. Reston:Amer Society of Civil Engineers,2000. [4] US-ASCE.Guideline for condition assessment of the building envelope:ASCE 30-14-2014[S]. Reston:Amer Society of Civil Engineers,2014. [5] Eurocode 8. Design of structures for earthquake resistance part3:assessment and retrofitting of buildings:BS EN 1998-3-2015[S]. British:2013:1-89. [6] 中华人民共和国住房和城乡建设部.民用建筑可靠性鉴定标准:GB 50292-2015[S]. 北京:中国建筑工业出版社,2016. [7] 中华人民共和国住房和城乡建设部.工业建筑可靠性鉴定标准:GB 50144-2019[S]. 北京:中国建筑工业出版社,2019. [8] 中华人民共和国住房和城乡建设部. 钢结构设计标准:GB 50017-2017[S]. 北京:中国建筑工业出版社,2018. [9] 刘西拉, 刘闯. 结构安全性等级的实用计算[J]. 建筑结构学报, 2001(1):42-47. [10] 顾祥林, 许勇, 张伟平. 既有建筑结构构件的安全性分析[J]. 建筑结构学报, 2004(6):117-122. [11] KUDSI T N, HAMMOUND R A, FU C C. Risk assessment of an existing concrete structure:a system reliability-based approach[C]//Fourth International Symposium on Uncertainty Modeling and Analysis, 2003.:IEEE,2003:442-446. [12] 林拥军, 邱秀姣, 葛宇东. 砌体结构安全性模糊层次综合评价方法[J]. 西南交通大学学报, 2016,51(6):1214-1221. [13] 何爱勇, 张明媛, 袁永博. 基于可变模糊集理论的危险房屋鉴定应用分析[J]. 工程管理学报, 2011,25(3):284-287. [14] 李玲娇. 基于模糊数学理论的古建筑震后评估方法研究[D]. 成都:西南交通大学, 2014. [15] ROSHAN P, PAL S, KUMAR R. Performance assessment indexing of buildings through fuzzy ahp methodology[M]. Springer, 2020:503-519. [16] 徐帅,郭小东,黄瑞乾,等. 基于层次分析法的古建筑木结构安全性评估方法[J]. 工业建筑,2016,46(12):180-183. [17] 陈水利, 李敬功, 王向公. 模糊集理论及其应用[M]. 北京:科学出版社, 2006. [18] 中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局.建筑地基基础设计规范:GB 50007-2011[S]. 北京:中国建筑工业出版社,2012. [19] 中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局.混凝土结构设计规范:GB 50010-2010(2015年版)[S]. 北京:中国建筑工业出版社,2016. [20] 中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局.砌体结构设计规范:GB 50003-2011[S]. 北京:中国建筑工业出版社,2012. [21] 邱东.多指标综合评价方法[J]. 统计研究, 1990(6):43-51.
点击查看大图
计量
- 文章访问数: 146
- HTML全文浏览量: 27
- PDF下载量: 2
- 被引次数: 0