Research on Flexural Properties of Reinforced Truss Spontaneous-Combustion Coal Gangue Concrete Composite Slabs
-
摘要: 将大宗工业固废煤矸石破碎后替代混凝土中的天然骨料可实现固废资源的再利用。为研究钢筋桁架-自燃煤矸石混凝土组合板的受弯性能,采用ABAQUS软件建立钢筋桁架-自燃煤矸石混凝土组合板受弯性能有限元模型,利用8组足尺试件的荷载-挠度和荷载-刚度结果验证模型的可靠性;通过参数分析量化自燃煤矸石骨料取代率对钢筋桁架-自燃煤矸石混凝土组合板受弯性能(受弯承载力和抗弯刚度)的影响;基于参数分析结果对现有的规范设计方法的适用性进行评述。结果表明:随自燃煤矸石骨料的掺入,钢筋桁架-自燃煤矸石混凝土组合板受弯性能有所降低,取代率为100%时抗弯承载力降低0.15%~0.69%,抗弯刚度较普通混凝土组合板降低30.65%~30.99%;GB50010—2017《混凝土结构设计规范》可用于钢筋桁架-自燃煤矸石混凝土组合板抗弯刚度的预测。
-
关键词:
- 钢筋桁架-混凝土组合板 /
- 自燃煤矸石 /
- 受弯性能 /
- 有限元分析 /
- 设计方法
Abstract: Coal gangue is a typical kind of solid waste produced during the process of coal mining, and crushing it to replace natural aggregate in concrete can realize its recycling. To study the flexural properties of reinforced truss spontaneous-combustion coal gangue aggregate concrete (RTSCGAC) composite slab, the finite element model of RTSCCGA composite slab was established by using ABAQUS software, and the reliability of the model was verified by the load-deflection and load-stiffness results from 8 groups of full-scale specimens; a parametric study was conducted and the influence of replacement ratio of spontaneous-combustion coal gangue aggregate (SCGA) on the flexural properties (flexural capacity and flexural stiffness) of RTSCGAC composite slab was quantified; based on the results of parametric analysis, the existing code design methods were reviewed. The results showed that the flexural properties of RTSCGAC composite slab decreased with the incorporation of SCGA, and the ultimate bearing capacity was slightly affected by the replacement ratio of SCGA. When the replacement ratio was 100%, the bending moment was only reduced by 0.15%~0.69%, while the flexural stiffness decreased by 30.65%~30.99%; Code for Design of Concrete Structures (GB 50010—2017) could be used for predicting the flexural stiffness of RTSCGAC composite slabs. -
[1] 刘宁, 刘开平, 荣丽娟, 等.煤矸石及其在建筑材料中的应用研究[J].混凝土与水泥制品, 2012, 39(9):74-76. [2] 周梅, 李高年, 张倩, 等.自燃煤矸石骨料在预拌混凝土中的应用[J].研究建筑材料学报, 2015, 18(5):830-835. [3] 段晓牧.煤矸石集料混凝土的微观结构与物理力学性能研究[D].徐州:中国矿业大学, 2014. [4] 周梅, 田博宇, 王强, 等.自燃煤矸石粗集料对砂轻混凝土性能影响的试验研究[J].硅酸盐通报, 2013, 32(11):2231-2237. [5] 周梅, 牟爽, 王强.等强条件下集料级配对煤矸石集料混凝土工作性与强度影响[J].硅酸盐通报, 2012, 31(6):1529-1534. [6] 李少伟, 周梅, 张莉敏.自燃煤矸石粗骨料特性及其对混凝土性能的影响[J].建筑材料学报, 2020, 23(2):334-340, 380. [7] QUEROL X, IZQUIERDO M, MONFORT E, et al.Environmental characterization of burnt coal gangue banks at Yangquan, Shanxi Province, China[J].International Journal of Coal Geology, 2008, 75(2):93-104. [8] 中华人民共和国建设部.普通混凝土用砂、石质量及检验方法标准:JGJ 52-2006[S].北京:中国建筑工业出版社, 2006. [9] WANG Q H, LI Z, ZHANG Y Z, et al.Influence of coarse coal gangue aggregates on elastic modulus and drying shrinkage behaviour of concrete[J].Journal of Building Engineering, 2020, 32:1-12. [10] 胡晓鹏, 吴枭, 彭刚.矿物掺合料混凝土早期碳化深度计算模型[J].工业建筑, 2020, 50(11):106-111. [11] 金凌志, 廉德铭, 李丽, 等.钢筋桁架超高性能混凝土叠合板受弯性能试验研究[J].工业建筑, 2020, 50(3):69-75. [12] 王庆贺, 李喆, 周梅, 等.自燃煤矸石骨料取代率对煤矸石混凝土梁受弯性能的影响[J].建筑结构学报, 2020, 41(12):64-74. [13] 白国良, 朱超, 王建文, 等.煤矸石混凝土梁受剪性能试验研究[J].建筑结构学报, 2020, 41(12):49-55. [14] 李朝辉.压型钢板-煤矸石轻骨料混凝土组合楼板的有限元分析[D].太原:太原理工大学, 2008. [15] 李帼昌, 常春, 曲赜胜.压型钢板-煤矸石混凝土组合楼板的力学性能[J].辽宁工程技术大学学报(自然科学版), 2003, 22(1):61-63. [16] 周梅, 张院强, 杨尚谕, 等.自燃煤矸石砂轻混凝土单向叠合板受弯性能研究[J].建筑材料学报, 2021, 24(5):1-10. [17] 何守民.钢筋桁架组合楼板刚度试验研究[D].合肥:合肥工业大学, 2013. [18] KATWAL U, TAO Z, HASSAN K.Finite element modelling of steel-concrete composite beams with profiled steel sheeting[J].Journal of Constructional Steel Research, 2018, 146(7):1-15. [19] British Standards Institution.Eurocode 4:design of composite steel and concrete structures:part 1:general rules and rules for buildings:BS EN 1994-1-1[S].London:British Standards Institution, 2014. [20] ACI.Building code requirements for structural concrete (ACI 318-14) and commentary:ACI 318R-14[S].Farmington Hills, MI:American Concrete Institute, 2014. [21] Standards Association of Australia.Australian standard for concrete structure:AS 3600-2009[S].Sydney:Standards Association of Australia, 2009.
点击查看大图
计量
- 文章访问数: 99
- HTML全文浏览量: 15
- PDF下载量: 2
- 被引次数: 0