中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊
中国建筑科学领域高质量科技期刊分级目录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岩质边坡水力劈裂机理研究

张涵 尹超 王章华 赵兴奎 王绍平 田文波

张涵, 尹超, 王章华, 赵兴奎, 王绍平, 田文波. 岩质边坡水力劈裂机理研究[J]. 工业建筑, 2023, 53(7): 147-156. doi: 10.13204/j.gyjzG22032813
引用本文: 张涵, 尹超, 王章华, 赵兴奎, 王绍平, 田文波. 岩质边坡水力劈裂机理研究[J]. 工业建筑, 2023, 53(7): 147-156. doi: 10.13204/j.gyjzG22032813
ZHANG Han, YIN Chao, WANG Zhanghua, ZHAO Xingkui, WANG Shaoping, TIAN Wenbo. Study on Hydraulic Fracturing Mechanisms of Rock Landslides[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(7): 147-156. doi: 10.13204/j.gyjzG22032813
Citation: ZHANG Han, YIN Chao, WANG Zhanghua, ZHAO Xingkui, WANG Shaoping, TIAN Wenbo. Study on Hydraulic Fracturing Mechanisms of Rock Landslides[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(7): 147-156. doi: 10.13204/j.gyjzG22032813

岩质边坡水力劈裂机理研究

doi: 10.13204/j.gyjzG22032813
基金项目: 

国家自然科学基金项目(51808327);山东省自然科学基金项目(ZR2019PEE016)。

详细信息
    作者简介:

    张涵,男,1998年出生,硕士研究生,20402010136@stumail.sdut.edu.cn。

    通讯作者:

    尹超,男,博士,副教授,硕士生导师,yinchao1987611@163.com。

Study on Hydraulic Fracturing Mechanisms of Rock Landslides

  • 摘要: 水力劈裂会导致岩体失稳破坏,是诱发岩质滑坡的重要原因。采用水泥砂浆试件模型试验和ABAQUS软件数值模拟了岩体水力劈裂阶段性破坏的过程,揭示其水力劈裂机理。以国道G205乐疃—青石关段某岩质边坡为例,通过数值模拟开展了高地下水压力作用下滑坡发生研究,再现了边坡失稳破坏的全过程。结果表明:试件发生水力劈裂时,裂缝面水压迅速下降但未完全贯通且试件仍存在一定的残余强度,结合数值模拟证实岩体水力劈裂是一种准脆性破坏,破坏过程包括静力阶段、微裂缝扩展阶段和宏观裂缝形成阶段;模拟岩质边坡现有危岩体3处,其中WYT3在暴雨工况和地震工况下处于不稳定状态;其在高水头压下的裂缝扩展经历了缓慢发展阶段、快速发展阶段和贯通阶段,缓慢发展阶段历时最长,裂缝贯通后边坡发生失稳破坏。
  • [1] YU P, ZHANG Y, PENG X, et al. Evaluation of impact force of rock landslides acting on structures using discontinuous deformation analysis[J/OL]. Computers and Geotechnics, 2019, 114(1/2/3/4)[2022-03-28]. https://doi.org/10.1016/j.compgeo.2019.103137.
    [2] ZHAN J W, WANG Q, ZHANG W, et al. Soil-engineering properties and failure mechanisms of shallow landslides in soft-rock materials[J/OL]. Catena, 2019, 181[2022-03-28]. https://doi.org/10.1016/j.catena.2019.104093.
    [3] LIAO H M, YANG X G, LU G D, et al. Experimental study on the river blockage and landslide dam formation induced by rock slides[J/OL]. Engineering Geology, 2019, 261[2022-03-28]. https://doi.org/10.1016/j.enggeo.2019.105269.
    [4] RAJA N B, Çiçek,Türkoǧlu N,et al. Correction to:landslide susceptibility mapping of the sera river basin using logistic regression model[J/OL]. Natural Hazards, 2018,91(3)[2022-03-28]. https://doi.org/10.1007/s11069-017-3145-3.
    [5] ZHANG S, LI C, ZHANG L, et al. Quantification of human vulnerability to earthquake-induced landslides using Bayesian network[J/OL]. Engineering Geology, 2019, 265[2022-03-28].https://doi.org/10.1016/j.enggeo.2019.105436.
    [6] 詹美礼,岑建.岩体水力劈裂机制圆筒模型试验及解析理论研究[J].岩石力学与工程学报, 2007, 26(6):1173-1181.
    [7] WANG S, LI D Y, MITRI H, et al. Numerical simulation of hydraulic fracture deflection influenced by slotted directional boreholes using XFEM with a modified rock fracture energy[J/OL]. Journal of Petroleum Science and Engineering, 2020, 193[2022-03-28].https://doi.org/10.1016/j.petrol.2020.107375.
    [8] LYU S F, WANG S W, CHEN X J, et al. Natural fractures in soft coal seams and their effect on hydraulic fracture propagation:A field study[J/OL]. Journal of Petroleum Science and Engineering, 2020,192[2022-03-28]. https://doi.org/10.1016/j.petrol.2020.107255.
    [9] DEHGHAN A N. An experimental investigation into the influence of pre-existing natural fracture on the behavior and length of propagating hydraulic fracture[J/OL]. Engineering Fracture Mechanics, 2020, 240[2022-03-28]. https://doi.org/10.1016/j.engfracmech.2020.107330.
    [10] BAGHBANAN A, JING L. Hydraulic properties of fractured rock masses with correlated fracture length and aperture[J]. International Journal of Rock Mechanics and Mining Sciences,2006,44(5):704-719.
    [11] 刘得潭,沈振中,徐力群,等.岩体水力劈裂临界水压力影响因素及机理研究[J]. 水利水运科学研究, 2018, 4(4):30-37.
    [12] PARK B Y, KIM K S, KWON S, et al. Determination of the hydraulic conductivity components using a three-dimensional fracture network model in volcanic rock[J]. Engineering Geology, 2002, 66(1):127-141.
    [13] XU J, ZHAI C, QIN L. Mechanism and application of pulse hydraulic fracturing in improving drainage of coalbed methane[J]. Journal of Natural Gas Science & Engineering, 2017, 40:79-90.
    [14] HOU Z K, CHENG H L, SUN S W, et al. Crack propagation and hydraulic fracturing in different lithologies[J]. Applied Geophysics, 2019, 16(2):243-251.
    [15] SUN C, ZHENG H, LIU W D, et al. Numerical simulation analysis of vertical propagation of hydraulic fracture in bedding plane[J/OL]. Engineering Fracture Mechanics, 2020,232[2022-03-28]. https://doi.org/10.1016/j.engfracmech.2020.107056.
    [16] 张健,王金意,荆铁亚,等.圆柱形页岩试样水力压裂模拟试验分析[J]. 安徽理工大学学报(自然科学版), 2019, 39(5):69-74.
    [17] LIU B, JIN Y, CHEN M. Influence of vugs in fractured-vuggy carbonate reservoirs on hydraulic fracture propagation based on laboratory experiments[J]. Journal of Structural Geology, 2019, 124:143-150.
    [18] DIAZ M B, KIM K Y, JUNG S G. Effect of frequency during cyclic hydraulic fracturing and the process of fracture development in laboratory experiments[J/OL]. International Journal of Rock Mechanics and Mining Sciences, 2020, 134[2022-03-28].https://doi.org/10.1016/j.ijrmms.2020.104474.
    [19] 胡少伟,王洋,孙岳阳,等.重力坝水力劈裂破坏结构变形分析[J]. 水利与建筑工程学报, 2020, 18(4):234-241.
    [20] WU H, KEMENY J, WU S. Experimental and numerical investigation of the punch-through shear test for mode II fracture toughness determination in rock[J]. Engineering Fracture Mechanics, 2017, 184:59-74.
    [21] 邹前堡.三峡地区岩质边坡滑动面裂隙水力劈裂分析[J]. 东北水利水电, 2021, 39(7):36-39.
    [22] HADJIGEORGIOU J, ESMAIELI K, GRENON M. Stability analysis of vertical excavations in hard rock by integrating a fracture system into a PFC model[J]. Tunnelling and Underground Space Technology, 2009, 24(3):296-308.
    [23] 沈振中,甘磊,徐力群.岩体/混凝土结构水力劈裂研究进展[J]. 人民黄河, 2019, 41(10):148-154.
    [24] 刘帅奇,马凤山,郭捷,等.水力劈裂裂隙扩展与软弱面作用机理离散元研究[J]. 东北大学学报(自然科学版), 2021, 42(3):444-456.
    [25] 吴谦,王常明,宋朋燃,等.黄土陡坡降雨冲刷试验及其三维颗粒流流-固耦合模拟[J]. 岩土力学, 2014, 35(4):977-985.
    [26] SUN Z D, WANG L Q, ZHOU J Q, et al. A new method for determining the hydraulic aperture of rough rock fractures using the support vector regression[J/OL]. Engineering Geology, 2020, 271[2022-03-28]. https://doi.org/10.1016/j.enggeo.2020.105618.
    [27] YU L K, WU X T, WANG Y D, et al. Stratified rock hydraulic fracturing for enhanced geothermal system and fracture geometry evaluation via effective length[J/OL]. Renewable Energy, 2020, 152[2022-03-28].https://doi.org/10.1016/j.renene.2020.01.097.
    [28] LIU Z Y, SU L J, ZHANG C L, et al. Investigation of the dynamic process of the Xinmo landslide using the discrete element method[J/OL]. Computers and Geotechnics, 2020, 123[2022-03-28]. https://doi.org/10.1016/j.compgeo.2020.103561.
    [29] CHEN Z H, LI X B, DUSSEAULT M B, et al. Effect of excavation stress condition on hydraulic fracture behaviour[J/OL]. Engineering Fracture Mechanics, 2020, 226[2022-03-28].https://doi.org/10.1016/j.engfracmech.2020.106871.
    [30] 徐爽,朱浮声,张俊.离散元法及其耦合算法的研究综述[J]. 力学与实践, 2013, 35(1):8-14

    ,19.
    [31] 倪小东,赵帅龙,王媛,等.岩体水力劈裂的细观PFC-CFD联合分析[J]. 岩石力学与工程学报, 2015(增刊2):3862-3870.
    [32] ALNEASAN M, BEHNIA M, BAGHERPOUR R. Analytical investigations of interface crack growth between two dissimilar rock layers under compression and tension[J/OL]. Engineering Geology, 2019, 259[2022-03-28].https://doi.org/10.1016/j.enggeo.2019.105188.
    [33] ZHANG K, YANG X J, CUI X B, et al. Numerical Simulation Analysis of NPR Anchorage Monitoring of Bedding Rock Landslide in Open-Pit Mine[J/OL]. Advances in Civil Engineering, 2020[2022-03-28]. https://doi.org/10.1155/2020/8241509.
    [34] ZHOU J, ZHANG L, PAN Z, et al. Numerical studies of interactions between hydraulic and natural fractures by Smooth Joint Model[J]. Journal of Natural Gas Science and Engineering, 2017,40:592-602.
    [35] ZHANG Q, ZHANG X P, JI P Q. Numerical study of interaction between a hydraulic fracture and a weak plane using the bonded-particle model based on moment tensors[J]. Computers and Geotechnics, 2018, 105:79-93.
    [36] QIU H, ZHU Z, WANG M, et al. Study on crack dynamic propagation behavior and fracture toughness in rock-mortar interface of concrete[J/OL]. Engineering Fracture Mechanics, 2019, 228[2022-03-28].https://doi.org/10.1016/j.engfracmech.2019.106798.
    [37] ZHANG Q, ZHANG X P, SUN W. Hydraulic fracturing in transversely isotropic tight sandstone reservoirs:A numerical study based on bonded-particle model approach[J/OL]. Journal of Structural Geology, 2020, 136[2022-03-28]. https://doi.org/10.1016/j.jsg.2020.104068.
    [38] 史亚旋,徐力群,陶韵成,等.双轴压缩状态下岩体水力劈裂试验研究[J]. 三峡大学学报(自然科学版), 2020(3):23-28.
    [39] ZHANG J, TEIXEIRA J, LITTLE D N, et al. Prediction of fatigue crack growth behavior of chemically stabilized materials using simple monotonic fracture test integrated with computational cohesive zone modeling[J/OL]. Composites Part B:Engineering, 2020, 200(5)[2022-03-28]. https://doi.org/10.1016/j.compositesb.2020.108367.
    [40] LIU H, LIAO X, TANG X, et al. A well test model based on embedded discrete-fracture method for pressure-transient analysis of fractured wells with complex fracture networks[J/OL]. Journal of Petroleum Science and Engineering, 2021, 196(4)[2022-03-28]. https://doi.org/10.1016/j.petrol.2020.108042.
    [41] HUANG Z, BAI X, YIN C, et al. Vertical bearing capacity of a pile-liquefiable sandy soil foundation under horizontal seismic force[J/OL]. PLos One, 2020, 15(3)[2022-03-28]. https://doi.org/10.1371/journal.pone.0229532.
    [42] YIN C, LI H R, HU Z N, et al. Application of the terrestrial laser scanning in slope deformation monitoring:taking a highway slope as an example[J/OL]. Applied Sciences, 2020, 10(8)[2022-03-28].https://doi.org/10.3390/app10082808.
    [43] ZENG Q D, YAO J, SHAO J. Study of hydraulic fracturing in an anisotropic poroelastic medium via a hybrid EDFM-XFEM approach[J]. Computers and Geotechnics, 2019, 105:51-68.
    [44] LIU Z Y, PAN Z J, LI S B, et al. Study on the effect of cemented natural fractures on hydraulic fracture propagation in volcanic reservoirs[J/OL]. Energy, 2022, 241[2022-03-28].https://doi.org/10.1016/j.energy.2021.122845.
    [45] HOU Y N, PENG Y, CHEN Z X, et al. Investigating heterogeneous distribution of fluid pressure in hydraulic fractures during pulsating hydraulic fracturing[J/OL]. Journal of Petroleum Science and Engineering, 2022, 209[2022-03-28]. https://doi.org/10.1016/j.petrol.2021.109823.
    [46] LIU Y L, ZHENG X B, PENG X F, et al. Influence of natural fractures on propagation of hydraulic fractures in tight reservoirs during hydraulic fracturing[J/OL]. Marine and Petroleum Geology, 2022, 138[2022-03-28]. https://doi.org/10.1016/j.marpetgeo.2021.105505.
    [47] 王国庆,谢兴华,速宝玉.岩体水力劈裂试验研究[J]. 采矿与安全工程学报, 2006, 23(4):480-484.
    [48] CHEN D, LI N, SUN W C, et al. Rupture properties and safety assessment of raw coal specimen rupture process under true triaxial hydraulic fracturing based on the source parameters and magnitude[J]. Process Safety and Environmental Protection, 2022, 158:661-673.
    [49] LI Y Y, HU W, WEI S Y, et al. Sensitivity analysis on the effect of natural fractures and injected fluid on hydraulic fracture propagation in a fractured reservoir[J/OL]. Engineering Fracture Mechanics, 2022, 263[2022-03-28]. https://doi.org/10.1016/j.engfracmech.2022.108288.
    [50] 陈洪凯,王蓉,唐红梅.危岩研究现状及趋势综述[J]. 重庆交通大学学报(自然科学版),2003,22(3):18-22.
    [51] 李家春,宋宗昌,侯少梁,等.北斗高精度定位技术在边坡变形监测中的应用[J].中国地质灾害与防治学报,2020,31(1):70-74

    ,78.
  • 加载中
计量
  • 文章访问数:  64
  • HTML全文浏览量:  12
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-28

目录

    /

    返回文章
    返回