Study on Hydraulic Fracturing Mechanisms of Rock Landslides
-
摘要: 水力劈裂会导致岩体失稳破坏,是诱发岩质滑坡的重要原因。采用水泥砂浆试件模型试验和ABAQUS软件数值模拟了岩体水力劈裂阶段性破坏的过程,揭示其水力劈裂机理。以国道G205乐疃—青石关段某岩质边坡为例,通过数值模拟开展了高地下水压力作用下滑坡发生研究,再现了边坡失稳破坏的全过程。结果表明:试件发生水力劈裂时,裂缝面水压迅速下降但未完全贯通且试件仍存在一定的残余强度,结合数值模拟证实岩体水力劈裂是一种准脆性破坏,破坏过程包括静力阶段、微裂缝扩展阶段和宏观裂缝形成阶段;模拟岩质边坡现有危岩体3处,其中WYT3在暴雨工况和地震工况下处于不稳定状态;其在高水头压下的裂缝扩展经历了缓慢发展阶段、快速发展阶段和贯通阶段,缓慢发展阶段历时最长,裂缝贯通后边坡发生失稳破坏。Abstract: Hydraulic fracturing can cause instability and failure of rock masses, which is an important reason for inducing rock landslide. The failure process of rock masses caused by hydraulic fracturing was tested with cement mortar specimens and simulated by ABAQUS Software to reveal the hydraulic fracturing mechanism. Taking a rock slope in Letuan-Qingshiguan section of the national road G205 as an example, the landslide occurrence under high groundwater pressure was studied by numerical simulations, and the whole process of slope instability and failure reappeared. The results indicated that when the hydraulic fracturing occured, the water pressure on the fracture plane decreaseed rapidly but cracks were not through the plane, and there was still a little of residual strength for specimens. Combined with numerical simulations, it was confirmed that the hydraulic fracturing of rock masses was quasi-brittle failure, which included static stage, micro-crack propagation stage and macro-crack formation stage. There were three dangerous rock masses in the simulated rock slope, in which WYT3 was unstable in rainstorm and earthquake conditions. The crack developed in three stages under high water head pressure including slow developing, rapid developing, and propagating through stages. The slow development stage lasted longest, and the slope was unstable after the crack propagated through.
-
Key words:
- rock landslide /
- hydraulic fracturing /
- model test /
- numerical simulation /
- failure mechanis
-
[1] YU P, ZHANG Y, PENG X, et al. Evaluation of impact force of rock landslides acting on structures using discontinuous deformation analysis[J/OL]. Computers and Geotechnics, 2019, 114(1/2/3/4)[2022-03-28]. https://doi.org/10.1016/j.compgeo.2019.103137. [2] ZHAN J W, WANG Q, ZHANG W, et al. Soil-engineering properties and failure mechanisms of shallow landslides in soft-rock materials[J/OL]. Catena, 2019, 181[2022-03-28]. https://doi.org/10.1016/j.catena.2019.104093. [3] LIAO H M, YANG X G, LU G D, et al. Experimental study on the river blockage and landslide dam formation induced by rock slides[J/OL]. Engineering Geology, 2019, 261[2022-03-28]. https://doi.org/10.1016/j.enggeo.2019.105269. [4] RAJA N B, Çiçek,Türkoǧlu N,et al. Correction to:landslide susceptibility mapping of the sera river basin using logistic regression model[J/OL]. Natural Hazards, 2018,91(3)[2022-03-28]. https://doi.org/10.1007/s11069-017-3145-3. [5] ZHANG S, LI C, ZHANG L, et al. Quantification of human vulnerability to earthquake-induced landslides using Bayesian network[J/OL]. Engineering Geology, 2019, 265[2022-03-28].https://doi.org/10.1016/j.enggeo.2019.105436. [6] 詹美礼,岑建.岩体水力劈裂机制圆筒模型试验及解析理论研究[J].岩石力学与工程学报, 2007, 26(6):1173-1181. [7] WANG S, LI D Y, MITRI H, et al. Numerical simulation of hydraulic fracture deflection influenced by slotted directional boreholes using XFEM with a modified rock fracture energy[J/OL]. Journal of Petroleum Science and Engineering, 2020, 193[2022-03-28].https://doi.org/10.1016/j.petrol.2020.107375. [8] LYU S F, WANG S W, CHEN X J, et al. Natural fractures in soft coal seams and their effect on hydraulic fracture propagation:A field study[J/OL]. Journal of Petroleum Science and Engineering, 2020,192[2022-03-28]. https://doi.org/10.1016/j.petrol.2020.107255. [9] DEHGHAN A N. An experimental investigation into the influence of pre-existing natural fracture on the behavior and length of propagating hydraulic fracture[J/OL]. Engineering Fracture Mechanics, 2020, 240[2022-03-28]. https://doi.org/10.1016/j.engfracmech.2020.107330. [10] BAGHBANAN A, JING L. Hydraulic properties of fractured rock masses with correlated fracture length and aperture[J]. International Journal of Rock Mechanics and Mining Sciences,2006,44(5):704-719. [11] 刘得潭,沈振中,徐力群,等.岩体水力劈裂临界水压力影响因素及机理研究[J]. 水利水运科学研究, 2018, 4(4):30-37. [12] PARK B Y, KIM K S, KWON S, et al. Determination of the hydraulic conductivity components using a three-dimensional fracture network model in volcanic rock[J]. Engineering Geology, 2002, 66(1):127-141. [13] XU J, ZHAI C, QIN L. Mechanism and application of pulse hydraulic fracturing in improving drainage of coalbed methane[J]. Journal of Natural Gas Science & Engineering, 2017, 40:79-90. [14] HOU Z K, CHENG H L, SUN S W, et al. Crack propagation and hydraulic fracturing in different lithologies[J]. Applied Geophysics, 2019, 16(2):243-251. [15] SUN C, ZHENG H, LIU W D, et al. Numerical simulation analysis of vertical propagation of hydraulic fracture in bedding plane[J/OL]. Engineering Fracture Mechanics, 2020,232[2022-03-28]. https://doi.org/10.1016/j.engfracmech.2020.107056. [16] 张健,王金意,荆铁亚,等.圆柱形页岩试样水力压裂模拟试验分析[J]. 安徽理工大学学报(自然科学版), 2019, 39(5):69-74. [17] LIU B, JIN Y, CHEN M. Influence of vugs in fractured-vuggy carbonate reservoirs on hydraulic fracture propagation based on laboratory experiments[J]. Journal of Structural Geology, 2019, 124:143-150. [18] DIAZ M B, KIM K Y, JUNG S G. Effect of frequency during cyclic hydraulic fracturing and the process of fracture development in laboratory experiments[J/OL]. International Journal of Rock Mechanics and Mining Sciences, 2020, 134[2022-03-28].https://doi.org/10.1016/j.ijrmms.2020.104474. [19] 胡少伟,王洋,孙岳阳,等.重力坝水力劈裂破坏结构变形分析[J]. 水利与建筑工程学报, 2020, 18(4):234-241. [20] WU H, KEMENY J, WU S. Experimental and numerical investigation of the punch-through shear test for mode II fracture toughness determination in rock[J]. Engineering Fracture Mechanics, 2017, 184:59-74. [21] 邹前堡.三峡地区岩质边坡滑动面裂隙水力劈裂分析[J]. 东北水利水电, 2021, 39(7):36-39. [22] HADJIGEORGIOU J, ESMAIELI K, GRENON M. Stability analysis of vertical excavations in hard rock by integrating a fracture system into a PFC model[J]. Tunnelling and Underground Space Technology, 2009, 24(3):296-308. [23] 沈振中,甘磊,徐力群.岩体/混凝土结构水力劈裂研究进展[J]. 人民黄河, 2019, 41(10):148-154. [24] 刘帅奇,马凤山,郭捷,等.水力劈裂裂隙扩展与软弱面作用机理离散元研究[J]. 东北大学学报(自然科学版), 2021, 42(3):444-456. [25] 吴谦,王常明,宋朋燃,等.黄土陡坡降雨冲刷试验及其三维颗粒流流-固耦合模拟[J]. 岩土力学, 2014, 35(4):977-985. [26] SUN Z D, WANG L Q, ZHOU J Q, et al. A new method for determining the hydraulic aperture of rough rock fractures using the support vector regression[J/OL]. Engineering Geology, 2020, 271[2022-03-28]. https://doi.org/10.1016/j.enggeo.2020.105618. [27] YU L K, WU X T, WANG Y D, et al. Stratified rock hydraulic fracturing for enhanced geothermal system and fracture geometry evaluation via effective length[J/OL]. Renewable Energy, 2020, 152[2022-03-28].https://doi.org/10.1016/j.renene.2020.01.097. [28] LIU Z Y, SU L J, ZHANG C L, et al. Investigation of the dynamic process of the Xinmo landslide using the discrete element method[J/OL]. Computers and Geotechnics, 2020, 123[2022-03-28]. https://doi.org/10.1016/j.compgeo.2020.103561. [29] CHEN Z H, LI X B, DUSSEAULT M B, et al. Effect of excavation stress condition on hydraulic fracture behaviour[J/OL]. Engineering Fracture Mechanics, 2020, 226[2022-03-28].https://doi.org/10.1016/j.engfracmech.2020.106871. [30] 徐爽,朱浮声,张俊.离散元法及其耦合算法的研究综述[J]. 力学与实践, 2013, 35(1):8-14,19. [31] 倪小东,赵帅龙,王媛,等.岩体水力劈裂的细观PFC-CFD联合分析[J]. 岩石力学与工程学报, 2015(增刊2):3862-3870. [32] ALNEASAN M, BEHNIA M, BAGHERPOUR R. Analytical investigations of interface crack growth between two dissimilar rock layers under compression and tension[J/OL]. Engineering Geology, 2019, 259[2022-03-28].https://doi.org/10.1016/j.enggeo.2019.105188. [33] ZHANG K, YANG X J, CUI X B, et al. Numerical Simulation Analysis of NPR Anchorage Monitoring of Bedding Rock Landslide in Open-Pit Mine[J/OL]. Advances in Civil Engineering, 2020[2022-03-28]. https://doi.org/10.1155/2020/8241509. [34] ZHOU J, ZHANG L, PAN Z, et al. Numerical studies of interactions between hydraulic and natural fractures by Smooth Joint Model[J]. Journal of Natural Gas Science and Engineering, 2017,40:592-602. [35] ZHANG Q, ZHANG X P, JI P Q. Numerical study of interaction between a hydraulic fracture and a weak plane using the bonded-particle model based on moment tensors[J]. Computers and Geotechnics, 2018, 105:79-93. [36] QIU H, ZHU Z, WANG M, et al. Study on crack dynamic propagation behavior and fracture toughness in rock-mortar interface of concrete[J/OL]. Engineering Fracture Mechanics, 2019, 228[2022-03-28].https://doi.org/10.1016/j.engfracmech.2019.106798. [37] ZHANG Q, ZHANG X P, SUN W. Hydraulic fracturing in transversely isotropic tight sandstone reservoirs:A numerical study based on bonded-particle model approach[J/OL]. Journal of Structural Geology, 2020, 136[2022-03-28]. https://doi.org/10.1016/j.jsg.2020.104068. [38] 史亚旋,徐力群,陶韵成,等.双轴压缩状态下岩体水力劈裂试验研究[J]. 三峡大学学报(自然科学版), 2020(3):23-28. [39] ZHANG J, TEIXEIRA J, LITTLE D N, et al. Prediction of fatigue crack growth behavior of chemically stabilized materials using simple monotonic fracture test integrated with computational cohesive zone modeling[J/OL]. Composites Part B:Engineering, 2020, 200(5)[2022-03-28]. https://doi.org/10.1016/j.compositesb.2020.108367. [40] LIU H, LIAO X, TANG X, et al. A well test model based on embedded discrete-fracture method for pressure-transient analysis of fractured wells with complex fracture networks[J/OL]. Journal of Petroleum Science and Engineering, 2021, 196(4)[2022-03-28]. https://doi.org/10.1016/j.petrol.2020.108042. [41] HUANG Z, BAI X, YIN C, et al. Vertical bearing capacity of a pile-liquefiable sandy soil foundation under horizontal seismic force[J/OL]. PLos One, 2020, 15(3)[2022-03-28]. https://doi.org/10.1371/journal.pone.0229532. [42] YIN C, LI H R, HU Z N, et al. Application of the terrestrial laser scanning in slope deformation monitoring:taking a highway slope as an example[J/OL]. Applied Sciences, 2020, 10(8)[2022-03-28].https://doi.org/10.3390/app10082808. [43] ZENG Q D, YAO J, SHAO J. Study of hydraulic fracturing in an anisotropic poroelastic medium via a hybrid EDFM-XFEM approach[J]. Computers and Geotechnics, 2019, 105:51-68. [44] LIU Z Y, PAN Z J, LI S B, et al. Study on the effect of cemented natural fractures on hydraulic fracture propagation in volcanic reservoirs[J/OL]. Energy, 2022, 241[2022-03-28].https://doi.org/10.1016/j.energy.2021.122845. [45] HOU Y N, PENG Y, CHEN Z X, et al. Investigating heterogeneous distribution of fluid pressure in hydraulic fractures during pulsating hydraulic fracturing[J/OL]. Journal of Petroleum Science and Engineering, 2022, 209[2022-03-28]. https://doi.org/10.1016/j.petrol.2021.109823. [46] LIU Y L, ZHENG X B, PENG X F, et al. Influence of natural fractures on propagation of hydraulic fractures in tight reservoirs during hydraulic fracturing[J/OL]. Marine and Petroleum Geology, 2022, 138[2022-03-28]. https://doi.org/10.1016/j.marpetgeo.2021.105505. [47] 王国庆,谢兴华,速宝玉.岩体水力劈裂试验研究[J]. 采矿与安全工程学报, 2006, 23(4):480-484. [48] CHEN D, LI N, SUN W C, et al. Rupture properties and safety assessment of raw coal specimen rupture process under true triaxial hydraulic fracturing based on the source parameters and magnitude[J]. Process Safety and Environmental Protection, 2022, 158:661-673. [49] LI Y Y, HU W, WEI S Y, et al. Sensitivity analysis on the effect of natural fractures and injected fluid on hydraulic fracture propagation in a fractured reservoir[J/OL]. Engineering Fracture Mechanics, 2022, 263[2022-03-28]. https://doi.org/10.1016/j.engfracmech.2022.108288. [50] 陈洪凯,王蓉,唐红梅.危岩研究现状及趋势综述[J]. 重庆交通大学学报(自然科学版),2003,22(3):18-22. [51] 李家春,宋宗昌,侯少梁,等.北斗高精度定位技术在边坡变形监测中的应用[J].中国地质灾害与防治学报,2020,31(1):70-74,78.
点击查看大图
计量
- 文章访问数: 64
- HTML全文浏览量: 12
- PDF下载量: 3
- 被引次数: 0