中国科技核心期刊
中国建筑科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岩质边坡水力劈裂机理研究

张涵 尹超 王章华 赵兴奎 王绍平 田文波

贾连光, 焦禹铭, 毕然, 张旭. 高温下蜂窝组合梁性能试验研究[J]. 工业建筑, 2020, 50(5): 126-132. doi: 10.13204/j.gyjz202005021
引用本文: 张涵, 尹超, 王章华, 赵兴奎, 王绍平, 田文波. 岩质边坡水力劈裂机理研究[J]. 工业建筑, 2023, 53(7): 147-156. doi: 10.13204/j.gyjzG22032813
JIA Lianguang, JIAO Yuming, BI Ran, ZHANG Xu. EXPERIMENTAL RESEARCH ON PERFORMANCE OF CASTELLATED COMPOSITE BEAMS AT HIGH TEMPERATURE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(5): 126-132. doi: 10.13204/j.gyjz202005021
Citation: ZHANG Han, YIN Chao, WANG Zhanghua, ZHAO Xingkui, WANG Shaoping, TIAN Wenbo. Study on Hydraulic Fracturing Mechanisms of Rock Landslides[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(7): 147-156. doi: 10.13204/j.gyjzG22032813

岩质边坡水力劈裂机理研究

doi: 10.13204/j.gyjzG22032813
基金项目: 

国家自然科学基金项目(51808327);山东省自然科学基金项目(ZR2019PEE016)。

详细信息
    作者简介:

    张涵,男,1998年出生,硕士研究生,20402010136@stumail.sdut.edu.cn。

    通讯作者:

    尹超,男,博士,副教授,硕士生导师,yinchao1987611@163.com。

Study on Hydraulic Fracturing Mechanisms of Rock Landslides

  • 摘要: 水力劈裂会导致岩体失稳破坏,是诱发岩质滑坡的重要原因。采用水泥砂浆试件模型试验和ABAQUS软件数值模拟了岩体水力劈裂阶段性破坏的过程,揭示其水力劈裂机理。以国道G205乐疃—青石关段某岩质边坡为例,通过数值模拟开展了高地下水压力作用下滑坡发生研究,再现了边坡失稳破坏的全过程。结果表明:试件发生水力劈裂时,裂缝面水压迅速下降但未完全贯通且试件仍存在一定的残余强度,结合数值模拟证实岩体水力劈裂是一种准脆性破坏,破坏过程包括静力阶段、微裂缝扩展阶段和宏观裂缝形成阶段;模拟岩质边坡现有危岩体3处,其中WYT3在暴雨工况和地震工况下处于不稳定状态;其在高水头压下的裂缝扩展经历了缓慢发展阶段、快速发展阶段和贯通阶段,缓慢发展阶段历时最长,裂缝贯通后边坡发生失稳破坏。
  • [1] YU P, ZHANG Y, PENG X, et al. Evaluation of impact force of rock landslides acting on structures using discontinuous deformation analysis[J/OL]. Computers and Geotechnics, 2019, 114(1/2/3/4)[2022-03-28]. https://doi.org/10.1016/j.compgeo.2019.103137.
    [2] ZHAN J W, WANG Q, ZHANG W, et al. Soil-engineering properties and failure mechanisms of shallow landslides in soft-rock materials[J/OL]. Catena, 2019, 181[2022-03-28]. https://doi.org/10.1016/j.catena.2019.104093.
    [3] LIAO H M, YANG X G, LU G D, et al. Experimental study on the river blockage and landslide dam formation induced by rock slides[J/OL]. Engineering Geology, 2019, 261[2022-03-28]. https://doi.org/10.1016/j.enggeo.2019.105269.
    [4] RAJA N B, Çiçek,Türkoǧlu N,et al. Correction to:landslide susceptibility mapping of the sera river basin using logistic regression model[J/OL]. Natural Hazards, 2018,91(3)[2022-03-28]. https://doi.org/10.1007/s11069-017-3145-3.
    [5] ZHANG S, LI C, ZHANG L, et al. Quantification of human vulnerability to earthquake-induced landslides using Bayesian network[J/OL]. Engineering Geology, 2019, 265[2022-03-28].https://doi.org/10.1016/j.enggeo.2019.105436.
    [6] 詹美礼,岑建.岩体水力劈裂机制圆筒模型试验及解析理论研究[J].岩石力学与工程学报, 2007, 26(6):1173-1181.
    [7] WANG S, LI D Y, MITRI H, et al. Numerical simulation of hydraulic fracture deflection influenced by slotted directional boreholes using XFEM with a modified rock fracture energy[J/OL]. Journal of Petroleum Science and Engineering, 2020, 193[2022-03-28].https://doi.org/10.1016/j.petrol.2020.107375.
    [8] LYU S F, WANG S W, CHEN X J, et al. Natural fractures in soft coal seams and their effect on hydraulic fracture propagation:A field study[J/OL]. Journal of Petroleum Science and Engineering, 2020,192[2022-03-28]. https://doi.org/10.1016/j.petrol.2020.107255.
    [9] DEHGHAN A N. An experimental investigation into the influence of pre-existing natural fracture on the behavior and length of propagating hydraulic fracture[J/OL]. Engineering Fracture Mechanics, 2020, 240[2022-03-28]. https://doi.org/10.1016/j.engfracmech.2020.107330.
    [10] BAGHBANAN A, JING L. Hydraulic properties of fractured rock masses with correlated fracture length and aperture[J]. International Journal of Rock Mechanics and Mining Sciences,2006,44(5):704-719.
    [11] 刘得潭,沈振中,徐力群,等.岩体水力劈裂临界水压力影响因素及机理研究[J]. 水利水运科学研究, 2018, 4(4):30-37.
    [12] PARK B Y, KIM K S, KWON S, et al. Determination of the hydraulic conductivity components using a three-dimensional fracture network model in volcanic rock[J]. Engineering Geology, 2002, 66(1):127-141.
    [13] XU J, ZHAI C, QIN L. Mechanism and application of pulse hydraulic fracturing in improving drainage of coalbed methane[J]. Journal of Natural Gas Science & Engineering, 2017, 40:79-90.
    [14] HOU Z K, CHENG H L, SUN S W, et al. Crack propagation and hydraulic fracturing in different lithologies[J]. Applied Geophysics, 2019, 16(2):243-251.
    [15] SUN C, ZHENG H, LIU W D, et al. Numerical simulation analysis of vertical propagation of hydraulic fracture in bedding plane[J/OL]. Engineering Fracture Mechanics, 2020,232[2022-03-28]. https://doi.org/10.1016/j.engfracmech.2020.107056.
    [16] 张健,王金意,荆铁亚,等.圆柱形页岩试样水力压裂模拟试验分析[J]. 安徽理工大学学报(自然科学版), 2019, 39(5):69-74.
    [17] LIU B, JIN Y, CHEN M. Influence of vugs in fractured-vuggy carbonate reservoirs on hydraulic fracture propagation based on laboratory experiments[J]. Journal of Structural Geology, 2019, 124:143-150.
    [18] DIAZ M B, KIM K Y, JUNG S G. Effect of frequency during cyclic hydraulic fracturing and the process of fracture development in laboratory experiments[J/OL]. International Journal of Rock Mechanics and Mining Sciences, 2020, 134[2022-03-28].https://doi.org/10.1016/j.ijrmms.2020.104474.
    [19] 胡少伟,王洋,孙岳阳,等.重力坝水力劈裂破坏结构变形分析[J]. 水利与建筑工程学报, 2020, 18(4):234-241.
    [20] WU H, KEMENY J, WU S. Experimental and numerical investigation of the punch-through shear test for mode II fracture toughness determination in rock[J]. Engineering Fracture Mechanics, 2017, 184:59-74.
    [21] 邹前堡.三峡地区岩质边坡滑动面裂隙水力劈裂分析[J]. 东北水利水电, 2021, 39(7):36-39.
    [22] HADJIGEORGIOU J, ESMAIELI K, GRENON M. Stability analysis of vertical excavations in hard rock by integrating a fracture system into a PFC model[J]. Tunnelling and Underground Space Technology, 2009, 24(3):296-308.
    [23] 沈振中,甘磊,徐力群.岩体/混凝土结构水力劈裂研究进展[J]. 人民黄河, 2019, 41(10):148-154.
    [24] 刘帅奇,马凤山,郭捷,等.水力劈裂裂隙扩展与软弱面作用机理离散元研究[J]. 东北大学学报(自然科学版), 2021, 42(3):444-456.
    [25] 吴谦,王常明,宋朋燃,等.黄土陡坡降雨冲刷试验及其三维颗粒流流-固耦合模拟[J]. 岩土力学, 2014, 35(4):977-985.
    [26] SUN Z D, WANG L Q, ZHOU J Q, et al. A new method for determining the hydraulic aperture of rough rock fractures using the support vector regression[J/OL]. Engineering Geology, 2020, 271[2022-03-28]. https://doi.org/10.1016/j.enggeo.2020.105618.
    [27] YU L K, WU X T, WANG Y D, et al. Stratified rock hydraulic fracturing for enhanced geothermal system and fracture geometry evaluation via effective length[J/OL]. Renewable Energy, 2020, 152[2022-03-28].https://doi.org/10.1016/j.renene.2020.01.097.
    [28] LIU Z Y, SU L J, ZHANG C L, et al. Investigation of the dynamic process of the Xinmo landslide using the discrete element method[J/OL]. Computers and Geotechnics, 2020, 123[2022-03-28]. https://doi.org/10.1016/j.compgeo.2020.103561.
    [29] CHEN Z H, LI X B, DUSSEAULT M B, et al. Effect of excavation stress condition on hydraulic fracture behaviour[J/OL]. Engineering Fracture Mechanics, 2020, 226[2022-03-28].https://doi.org/10.1016/j.engfracmech.2020.106871.
    [30] 徐爽,朱浮声,张俊.离散元法及其耦合算法的研究综述[J]. 力学与实践, 2013, 35(1):8-14

    ,19.
    [31] 倪小东,赵帅龙,王媛,等.岩体水力劈裂的细观PFC-CFD联合分析[J]. 岩石力学与工程学报, 2015(增刊2):3862-3870.
    [32] ALNEASAN M, BEHNIA M, BAGHERPOUR R. Analytical investigations of interface crack growth between two dissimilar rock layers under compression and tension[J/OL]. Engineering Geology, 2019, 259[2022-03-28].https://doi.org/10.1016/j.enggeo.2019.105188.
    [33] ZHANG K, YANG X J, CUI X B, et al. Numerical Simulation Analysis of NPR Anchorage Monitoring of Bedding Rock Landslide in Open-Pit Mine[J/OL]. Advances in Civil Engineering, 2020[2022-03-28]. https://doi.org/10.1155/2020/8241509.
    [34] ZHOU J, ZHANG L, PAN Z, et al. Numerical studies of interactions between hydraulic and natural fractures by Smooth Joint Model[J]. Journal of Natural Gas Science and Engineering, 2017,40:592-602.
    [35] ZHANG Q, ZHANG X P, JI P Q. Numerical study of interaction between a hydraulic fracture and a weak plane using the bonded-particle model based on moment tensors[J]. Computers and Geotechnics, 2018, 105:79-93.
    [36] QIU H, ZHU Z, WANG M, et al. Study on crack dynamic propagation behavior and fracture toughness in rock-mortar interface of concrete[J/OL]. Engineering Fracture Mechanics, 2019, 228[2022-03-28].https://doi.org/10.1016/j.engfracmech.2019.106798.
    [37] ZHANG Q, ZHANG X P, SUN W. Hydraulic fracturing in transversely isotropic tight sandstone reservoirs:A numerical study based on bonded-particle model approach[J/OL]. Journal of Structural Geology, 2020, 136[2022-03-28]. https://doi.org/10.1016/j.jsg.2020.104068.
    [38] 史亚旋,徐力群,陶韵成,等.双轴压缩状态下岩体水力劈裂试验研究[J]. 三峡大学学报(自然科学版), 2020(3):23-28.
    [39] ZHANG J, TEIXEIRA J, LITTLE D N, et al. Prediction of fatigue crack growth behavior of chemically stabilized materials using simple monotonic fracture test integrated with computational cohesive zone modeling[J/OL]. Composites Part B:Engineering, 2020, 200(5)[2022-03-28]. https://doi.org/10.1016/j.compositesb.2020.108367.
    [40] LIU H, LIAO X, TANG X, et al. A well test model based on embedded discrete-fracture method for pressure-transient analysis of fractured wells with complex fracture networks[J/OL]. Journal of Petroleum Science and Engineering, 2021, 196(4)[2022-03-28]. https://doi.org/10.1016/j.petrol.2020.108042.
    [41] HUANG Z, BAI X, YIN C, et al. Vertical bearing capacity of a pile-liquefiable sandy soil foundation under horizontal seismic force[J/OL]. PLos One, 2020, 15(3)[2022-03-28]. https://doi.org/10.1371/journal.pone.0229532.
    [42] YIN C, LI H R, HU Z N, et al. Application of the terrestrial laser scanning in slope deformation monitoring:taking a highway slope as an example[J/OL]. Applied Sciences, 2020, 10(8)[2022-03-28].https://doi.org/10.3390/app10082808.
    [43] ZENG Q D, YAO J, SHAO J. Study of hydraulic fracturing in an anisotropic poroelastic medium via a hybrid EDFM-XFEM approach[J]. Computers and Geotechnics, 2019, 105:51-68.
    [44] LIU Z Y, PAN Z J, LI S B, et al. Study on the effect of cemented natural fractures on hydraulic fracture propagation in volcanic reservoirs[J/OL]. Energy, 2022, 241[2022-03-28].https://doi.org/10.1016/j.energy.2021.122845.
    [45] HOU Y N, PENG Y, CHEN Z X, et al. Investigating heterogeneous distribution of fluid pressure in hydraulic fractures during pulsating hydraulic fracturing[J/OL]. Journal of Petroleum Science and Engineering, 2022, 209[2022-03-28]. https://doi.org/10.1016/j.petrol.2021.109823.
    [46] LIU Y L, ZHENG X B, PENG X F, et al. Influence of natural fractures on propagation of hydraulic fractures in tight reservoirs during hydraulic fracturing[J/OL]. Marine and Petroleum Geology, 2022, 138[2022-03-28]. https://doi.org/10.1016/j.marpetgeo.2021.105505.
    [47] 王国庆,谢兴华,速宝玉.岩体水力劈裂试验研究[J]. 采矿与安全工程学报, 2006, 23(4):480-484.
    [48] CHEN D, LI N, SUN W C, et al. Rupture properties and safety assessment of raw coal specimen rupture process under true triaxial hydraulic fracturing based on the source parameters and magnitude[J]. Process Safety and Environmental Protection, 2022, 158:661-673.
    [49] LI Y Y, HU W, WEI S Y, et al. Sensitivity analysis on the effect of natural fractures and injected fluid on hydraulic fracture propagation in a fractured reservoir[J/OL]. Engineering Fracture Mechanics, 2022, 263[2022-03-28]. https://doi.org/10.1016/j.engfracmech.2022.108288.
    [50] 陈洪凯,王蓉,唐红梅.危岩研究现状及趋势综述[J]. 重庆交通大学学报(自然科学版),2003,22(3):18-22.
    [51] 李家春,宋宗昌,侯少梁,等.北斗高精度定位技术在边坡变形监测中的应用[J].中国地质灾害与防治学报,2020,31(1):70-74

    ,78.
  • 加载中
计量
  • 文章访问数:  82
  • HTML全文浏览量:  14
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-28

目录

    /

    返回文章
    返回