Experimental Research on Seismic Properties of Rectangular FRP-Concrete-Steel Double-Skin Tubular Columns Under Quasi-Static Load
-
摘要: 纤维增强复材(FRP)-混凝土-钢管组合空心柱由FRP外管、钢内管和两者之间填充的混凝土组成,具有良好的抗震性能和耐腐蚀性能。现有研究主要集中在圆形截面组合空心柱和方形截面组合空心柱,而针对矩形截面组合空心柱的研究较少。矩形截面组合空心柱可根据工程需要,合理设计截面的长边与短边之比,以提供绕两对称轴不同的抗弯刚度。通过对3个矩形FRP-混凝土-钢组合空心柱在恒定轴压和侧向往复荷载下的抗震性能试验,参数包括FRP厚度和水平侧向荷载的加载方向(即绕矩形截面的强轴或弱轴施加弯矩),该组合柱的长边和短边分别为300 mm和200 mm,总高度为2 150 mm,研究表明:具有较厚FRP管的试件的承载力较高;绕强轴加载的试件的承载力和延性远高于绕弱轴加载的试件;基于OpenSees建立的数值模型对滞回曲线的预测略偏保守。Abstract: FRP-concrete-steel double-skin tubular columns (DSTCs), which consist of an outer FRP tube, an inner steel tube and the concrete infilled between the two tubes, have excellent seismic performance and anti-corrosion performance. Existing studies on DSTCs focused on specimens with a circular cross-section or a square cross-section, while specimens with a rectangular cross-section are rarely investigated. According to engineering needs, the rectangular aspect ratio could be designed optimally for rectangular DSTCs to provide different bending stiffness around two axes of symmetry. 3 rectangular DSTCs were tested under constant axial compression and lateral cyclic loading to assess their seismic performance, and the parameters included the FRP thickness and the lateral loading direction (i.e., bending around the strong axis or the weak axis of the rectangular cross-section). Rectangular DSTCs in the present study had a length of 300 mm and a width of 200 mm for the cross-section, and a total height of 2 150 mm. The results indicated that the specimen with a thicker FRP tube had a larger bearing capacity;the specimen loaded around its strong axis had better bearing capacity and ductile than the corresponding specimen loaded around its weak axis; the predictions for the experimental hysteretic curves by numerical model based on OpenSees were slightly conservative.
-
[1] 滕锦光. 新材料组合结构[J]. 土木工程学报, 2018, 51(12):1-11. [2] 叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006, 39(3):24-36. [3] 吴智深, 汪昕, 吴刚. 面向重大工程应用FRP若干核心研究问题[C]//第七届全国建设工程FRP应用学术交流会论文集. 杭州:2011. [4] 滕锦光, 余涛, 黄玉龙, 等. FRP管-混凝土-钢管组合柱力学性能的试验研究和理论分析[J]. 建筑钢结构进展, 2006, 8(5):1-7. [5] TENG J G, YU T, WONG Y L, et al. Hybrid FRP-concrete-steel tubular columns:concept and behavior[J]. Construction and Building Materials, 2007, 21(4):846-854. [6] ZHOU Y W, LIU X M, XING F, et al. Behavior and modeling of FRP-concrete-steel double-skin tubular columns made of full lightweight aggregate concrete[J]. Construction and Building Materials, 2017, 139:52-63. [7] ZHANG B, TENG J G, YU T. Compressive behavior of double-skin tubular columns with high-strength concrete and a filament-wound FRP tube[J]. Journal of Composites for Construction-ASCE, 2017.DOI: 10.1061/(ASCE)CC.1943-5614.0000800. [8] ZHANG B, YU T, TENG J G. Behavior and modelling of FRP-concrete-steel hybrid double-skin tubular columns under repeated unloading/reloading cycles[J]. Composite Structures, 2021, 258. https://doi.org/10.1016/j.compstruct.2020.113393. [9] YU T, WONG Y L, TENG J G. Behavior of hybrid FRP-concrete-steel double-skin tubular columns subjected to eccentric compression[J]. Advances in Structural Engineering, 2010, 13(5):961-974. [10] 钱稼茹, 刘明学. FRP-混凝土-钢双壁空心管长柱轴心受压试验[J]. 混凝土, 2006(9):31-34. [11] 许平, 姚谏, 卢哲刚. 纤维增强复合材料管-混凝土-钢管组合长柱偏心受压试验研究[J]. 工业建筑, 2014, 44(1):134-137. [12] HAN L H, TAO Z, LIAO F Y, et al. Tests on cyclic performance of FRP-concrete-steel double-skin tubular columns[J]. Thin-Walled Structures, 2010, 48(6):430-493. [13] ZHANG B, TENG J G, YU T. Experimental behavior of hybrid FRP-concrete-steel double-skin tubular columns under combined axial compression and cyclic lateral loading[J]. Engineering Structures, 2015, 99:214-231. [14] ZHANG B, YU T, TENG J G, et al. Numerical simulation of hysteretic behavior of hybrid FRP-concrete-steel double-skin tubular columns[C]//Proceedings, The 12th International Symposium on Fiber Reinforced Polymers for Reinforced Concrete Structures (FRPRCS-12) & The 5th Asia-Pacific Conference on Fiber Reinforced Polymers in Structures (APFIS-2015) Joint Conference. Nanjing:2015. [15] WANG R, HAN L H, TAO Z. Behavior of FRP-concrete-steel double skin tubular members under lateral impact Experimental study[J]. Thin-Walled Structures, 2015, 95:363-373. [16] 刘烨, 王蕊, 李志刚. CFRP-混凝土-钢管组合结构在低速侧向撞击下的动力响应[J]. 爆炸与冲击, 2018, 38(4):759-767. [17] JIANG S, FERNADO D, TENG J G. Experimental behaviour of hybrid FRP-concrete-steel double-skin tubular arches[C]//Proceedings of the 8th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering. Hong Kong:2016. [18] CHEN G M. Use of FRP-concrete-steel hybrid tubular members in bridges:first practical implementations in the world[C]//Fifth International Workshop on Seawater Sea-sand Concrete (SSC) Structures Reinforced with FRP Composites. Hong Kong:2021. [19] YU T, WONG Y L, TENG J G, et al. Flexural behaviour of hybrid FRP-concrete-steel double-skin tubular members[J]. Journal of Composites for Construction, ASCE, 2006, 10(5):443-452. [20] ZHAO J L, TENG J G, YU T. Behavior of large-scale hybrid FRP-concrete-steel double-skin tubular beams with shear connectors[J]. Journal of Composite of Construction-ASCE, 2016, 20(5).DOI: 10.1061/(ASCE)CC.1943-5614.0000669. [21] 中华人民共和国住房和城乡建设部. 纤维增强复合材料建设工程应用技术规范:GB 50608-2020[S]. 北京:中国计划出版社, 2020. [22] ASTM. Standard test method for tensile properties of polymer matrix composite materials:ASTM D3039/D3039M-00[S]. Philadelphia, USA:American Society for Testing and Materials (ASTM), 2000. [23] ASTM. Standard test method for compressive strength of cylindrical concrete specimens:ASTM C39/C39M-11a[S]. Philadelphia, USA:American Society for Testing for Testing and Materials (ASTM), 2011. [24] 中国国家标准化管理委员会. 金属材料拉伸试验第1部分:室温试验方法:GB/T 228.1-2010[S]. 北京:中国国家标准化管理委员会, 2010. [25] ZHANG B, HU X M, WEI W, et al. Effect of cross-sectional aspect ratio on rectangular FRP-concrete-steel double-skin tubular columns under axial compression[J]. Advances in Polymer Technology, 2020. DOI.org/10.1155/2020/1349034.
点击查看大图
计量
- 文章访问数: 89
- HTML全文浏览量: 24
- PDF下载量: 1
- 被引次数: 0