中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊
中国建筑科学领域高质量科技期刊分级目录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玄武岩纤维对橡胶混凝土抗冲击性能的影响

魏昆仑 李双喜

魏昆仑, 李双喜. 玄武岩纤维对橡胶混凝土抗冲击性能的影响[J]. 工业建筑, 2022, 52(9): 42-47,128. doi: 10.13204/j.gyjzG22031210
引用本文: 魏昆仑, 李双喜. 玄武岩纤维对橡胶混凝土抗冲击性能的影响[J]. 工业建筑, 2022, 52(9): 42-47,128. doi: 10.13204/j.gyjzG22031210
WEI Kun-lun, LI Shuang-xi. Effect of Basalt Fiber on Impact Resistance of Rubber Concrete[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 42-47,128. doi: 10.13204/j.gyjzG22031210
Citation: WEI Kun-lun, LI Shuang-xi. Effect of Basalt Fiber on Impact Resistance of Rubber Concrete[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 42-47,128. doi: 10.13204/j.gyjzG22031210

玄武岩纤维对橡胶混凝土抗冲击性能的影响

doi: 10.13204/j.gyjzG22031210
基金项目: 

新疆维吾尔自治区自然科学基金项目(2019D01A46)

详细信息
    作者简介:

    魏昆仑,男,1995年出生,硕士研究生

    通讯作者:

    李双喜,xjlsx123@126.com。

Effect of Basalt Fiber on Impact Resistance of Rubber Concrete

  • 摘要: 为研究玄武岩纤维(BF)对针状橡胶混凝土抗冲击性能的影响,通过落锤冲击试验,分析不同BF掺量和长度的针状橡胶混凝土抗冲击性能,结合扫描电子显微镜(SEM)观察微观结构并讨论增强机理,最后运用Weibull分布模型对抗冲击试验结果进行拟合。结果表明:BF可提高针状橡胶混凝土的抗冲击性能,当BF长为12mm、掺量为0.1%时,针状橡胶混凝土的冲击耗能提升率最大,为54%,此时相较于普通混凝土,玄武岩纤维橡胶混凝土(BFRC)的冲击耗能提高了516%;冲击动能作用下,针状橡胶通过变形耗散部分动能,BF通过与基体间的黏结力和摩擦力耗散部分动能用于纤维的拉拔形变破坏,两种材料减小了冲击动能对混凝土基体的损伤,达到增韧阻裂的目的;BFRC的抗冲击次数可用双参数Weibull分布统计分析。
  • [1] 晁夫奎, 王玉.我国废旧轮胎资源化技术应用现状及研究方向[J].再生资源与循环经济, 2021, 14(9):27-29.
    [2] 郝贠洪, 樊磊, 韩燕, 等.冲击荷载作用下橡胶混凝土的损伤研究[J].振动与冲击, 2019, 38(17):73-80.
    [3] GUPTA T, SHARMA R K, CHAUDHARY S.Impact resistance of concrete containing waste rubber fiber and silica fume[J].International Journal of Impact Engineering, 2015, 83(9):76-87.
    [4] 韩菊红, 袁群, 冯凌云, 等.橡胶混凝土的抗冲击性能研究[J].人民黄河, 2018, 40(11):107-109.
    [5] ABDELMONEM A, EL-FEKY M S, NASR E S A R, et al.Performance of high strength concrete containing recycled rubber[J].Construction and Building Materials, 2019, 227(10):1-10.
    [6] LI Y, ZHANG S, WANG R, et al.Potential use of waste tire rubber as aggregate in cement concrete:a comprehensive review[J].Construction and Building Materials, 2019, 225(11):1183-1201.
    [7] ISMAIL M K, HASSAN A, LACHEMI M.Effect of fiber type on impact and abrasion resistance of engineered cementitious composite[J].ACI Materials Journal, 2018, 115(6):957-968.
    [8] 高真, 曹鹏, 孙新建, 等.玄武岩纤维混凝土抗压强度分析与微观表征[J].水力发电学报, 2018, 37(8):111-120.
    [9] XINZHONG WANG, JUN HE, et al.The effects of fiber length and volume on material proper-ties and crack resistance of basalt fiber reinforced concrete[J].Advances in Materials Science and Engineering, 2019, 2019(4):1-17.
    [10] 王振山, 邢立新, 赵凯, 等.硫酸镁侵蚀环境下玄武岩纤维混凝土耐腐蚀及力学性能劣化研究[J].应用力学学报, 2020, 37(1):134-141.
    [11] 朱涵, 刘昂, 于泳.低温下玄武岩纤维混凝土的抗冲击性能[J].材料科学与工程学报, 2018, 36(4):600-604.
    [12] ELIK Z, BINGL A F.Fracture properties and impact resistance of self-compacting fiber reinforced concrete (SCFRC)[J].Materials and Structures, 2020, 53(3):1-16.
    [13] YOUSSF O, MILLS J E, HASSANLI R.Assessment of the mechanical performance of crumb rubber concrete[J].Construction and Building Materials, 2016, 125(8):175-183.
    [14] 胡艳丽, 高培伟, 李富荣, 等.不同取代率的橡胶混凝土力学性能试验研究[J].建筑材料学报, 2020, 23(1):85-92.
    [15] 周浩, 贾彬, 黄辉, 等.玄武岩纤维混凝土抗压和抗折力学性能试验研究[J].工业建筑, 2019, 49(8):147-152.
    [16] SADRMOMTAZI A, TAHMOURESI B, SARADAR A.Effects of silica fume on mechanical strength and micros-tructure of basalt fiber reinforced cementitious composites (BFRCC)[J].Construction and Building Materials, 2018, 162(2):321-333.
    [17] 贺东青, 王金歌, 王一鸣.橡胶掺量对CBFRC的物理力学性能影响[J].建筑材料学报, 2015, 18(5):857-860.
    [18] 陈疏桐, 陈建东, 薛旭.玄武岩纤维橡胶混凝土力学及冻融性能试验研究[J].混凝土与水泥制品, 2020, 46(4):54-58.
    [19] 高峰, 郝贠洪, 吴安利, 等.低模量聚酯纤维/水泥基复合材料抗冲击性能及损伤机制[J].复合材料学报, 2021, 38(11):3838-3849.
    [20] 李冬, 丁一宁.钢筋与结构型合成纤维对混凝土抗冲击性能混杂效应的分析[J].振动与冲击, 2017, 36(2):123-128.
    [21] LI J J, NIU J G, WAN C J, et al.Investigation on mechanical properties and microstructure of high performance polypropylene fiber reinforced lightweight aggregate concrete[J].Construction and Building Materials, 2016, 118(8):27-35.
    [22] 闻洋, 刘培培.橡胶混凝土抗冲击性能研究[J].硅酸盐通报, 2018, 37(3):792-799.
    [23] 刘加平, 汤金辉, 韩方玉.现代混凝土增韧防裂原理及应用[J].土木工程学报, 2021, 54(10):47-54.
    [24] 侯敏, 陶燕, 陶忠, 等.关于玄武岩纤维混凝土的增强机理研究[J].混凝土, 2020(2):67-71.
    [25] 王立成, 王海涛, 刘汉勇.钢纤维轻骨料混凝土抗冲击性能试验研究与统计分析[J].大连理工大学学报, 2010, 50(4):557-563.
    [26] WEIBULL W.A statistical distribution function of wide applicability[J].Journal of Applied Mechanics, 1951, 18(3):293-297.
    [27] 刘问, 徐世烺, 李庆华, 等.等幅疲劳荷载作用下超高韧性水泥基复合材料弯曲疲劳寿命试验研究[J].建筑结构学报, 2012, 33(1):119-127.
    [28] OH B H.Fatigue life distribution of concrete forvarious stress levels[J].ACI Materials Journal, 1991, 88(2):191-198.
    [29] RAHMANI T, KIANI B, SHEKARCHI M, et al.Statistical and experimental analysis on the behavior of fiber reinforced concretes subjected to drop weight test[J].Construction & Building Materials, 2012, 37(7):360-369.
  • 加载中
计量
  • 文章访问数:  80
  • HTML全文浏览量:  15
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-12
  • 网络出版日期:  2023-02-06

目录

    /

    返回文章
    返回