Experimental Research on Dynamic Properties of CFRP Reinforced Concrete Frame Structures
-
摘要: 通过相似性分析计算,设计加工了比例为1:4的碳纤维增强复合材料(CFRP)筋混凝土框架结构缩尺模型,开展了模拟地震振动台动力试验研究。采用4种不同强度的水平地震作用进行单向、双向以及三向地震波激励,测试结构模型的动力特性;通过结构在各级地震作用下的加速度、位移、内力等动力响应分析,探究了CFRP筋混凝土框架结构的抗震性能。结果表明:随着地震激励作用的增强,结构自振周期不断变长,从7度多遇地震作用到8度罕遇地震作用,X向增长54%,Y向增长60%,说明结构模型受到了不同程度的损伤,致使结构刚度不断退化,变形增大且出现局部混凝土压碎破坏。但结构模型在经历加速度峰值为0.788 g的罕遇地震作用后,仍未发生倒塌现象,且最大层间位移角值小于1/50,表明结构模型具有良好抗震性能,可以满足"小震不坏、中震可修、大震不倒"的抗震设防水准要求。
-
关键词:
- CFRP筋混凝土框架 /
- 动力性能 /
- 振动台试验 /
- 刚度退化 /
- 抗震性能
Abstract: Through similarity analysis, the 1:4 scale model of CFRP (carbon fiber reinforced plastics) reinforced concrete frame structure was designed and manufactured, and the dynamic test of simulated seismic shaking table was carried out. Unidirectional, bidirectional and tridirectional seismic excitation was applied to test the dynamic characteristics of the structural model. The seismic performance of the CFRP reinforced concrete frame structure was investigated by analyzing the dynamic response and hysteretic performance of the structure under different levels of earthquake, such as acceleration, displacement and internal force. The results showed that with the enhancement of seismic excitation, the natural vibration period of the structure kept getting longer increasing 54% in the X direction and 60% in the Y direction from seven-degree to eight-degree earthquake action, indicating that the structural model had been damaged to varying degrees, resulting in continuous degradation of structural stiffness, increasing deformation and partial concrete crushing failure. However, the structure model still did not collapse after experiencing the rarely accurred earthquake with the peak acceleration of 0.788 g, and the maximum inter-storey displacement angle was less than 1/50, indicating that the structure model had good seismic performance and could meet the seismic fortifying level requirements of "not bad in small earthquakes, repairable in medium earthquakes, and not falling in large earthquakes". -
[1] OTIENO M, IKOTUN J, BALLIM Y. Experimental investigations on the influence of cover depth and concrete quality on time to cover cracking due to carbonation-induced corrosion of steel in RC structures in an urban, inland environment[J]. Construction and Building Materials, 2019, 198(20):172-181. [2] JIE C, BO D, HE J, et al. Equivalent surface defect model for fatigue life prediction of steel reinforcing bars with pitting corrosion[J]. International Journal of Fatigue, 2018, 110(5):153-161. [3] CHOU J S, NGO N T, CHONG W K. The use of artificial intelligence combiners for modeling steel pitting risk and corrosion rate[J]. Engineering Applications of Artificial Intelligence, 2017, 65:471-483. [4] 尹世平,华云涛,徐世烺. FRP配筋混凝土结构研究进展及其应用[J].建筑结构学报, 2021, 42(1):134-150. [5] ZS A, LF A, DCF A, et al. Experimental study on the flexural behavior of concrete beams reinforced with bundled hybrid steel/FRP bars[J]. Engineering Structures,2019,197:109-443. [6] ESCORCIO P, FRANCA P M. Experimental study of a rehabilitation solution that uses GFRP bars to replace the steel bars of reinforced concrete beams[J]. Engineering Structures, 2016, 128:166-183. [7] 丁驯,周叮,刘朵,等. 预张拉CFRP布增强加筋矩形板的动力特性分析[J]. 振动与冲击, 2018, 37(6):124-129. [8] 吴智深,汪昕,史健喆. 玄武岩纤维复合材料性能提升及其新型结构[J]. 工程力学, 2020, 37(5):1-14. [9] SUN Z Y, FU L C, FENG D C, et al. Experimental study on the flexural behavior of concrete beams reinforced with bundled hybrid steel/FRP bars[J/OL]. Engineering Structures, 2019, 197[2019-07-25].https://doi.org/10.1016/j.engstruct.2019.109443. [10] 董志强,吴刚. FRP筋增强混凝土结构耐久性能研究进展[J]. 土木工程学报, 2019, 52(10):1-9, 29. [11] 朱海堂,程晟钊,高丹盈,等. 玄武岩纤维增强聚合物筋钢纤维高强混凝土梁受弯试验及裂缝宽度计算方法研究[J]. 建筑结构学报, 2020, 41(6):133-142. [12] 姚未来,江世永,飞渭,等. CFRP筋高韧性水泥基复合材料柱抗震性能试验研究[J]. 振动与冲击, 2019, 38(9):199-207. [13] 徐新生,纪涛,郑永峰. FRP筋混凝土梁挠度的特点及计算方法[J]. 工程力学,2009,26(增刊):71-75. [14] 邓宗才,高磊,王献云. GFRP筋混凝土柱抗震性能试验[J]. 中国公路学报, 2017, 30(10):53-61. [15] FUKUYAMA H, MASUDA Y. Structural performances of concrete frame with FRP reinforcement[M]. London:Edited by Taerwe, 1995. [16] 张洪达. FRP筋混凝土框架结构抗震性能有限元分析[D]. 济南:济南大学, 2014. [17] SHARBATDAR M K, SAATCIOGLU M, BENMOKRANE B. Seismic flexural behavior of concrete connections reinforced with CFRP bars and grids[J]. Composite Structures, 2011, 93(10):2439-2449. [18] 张爱林,王小青,刘学春,等. 北京大兴国际机场航站楼大跨度钢结构整体缩尺模型振动台试验研究[J]. 建筑结构学报, 2021, 42(3):1-13. [19] 中华人民共和国住房和城乡建设部.建筑抗震设计规范:GB 50011-2010[S]. 北京:中国建筑工业出版社, 2010.
点击查看大图
计量
- 文章访问数: 99
- HTML全文浏览量: 13
- PDF下载量: 3
- 被引次数: 0