Research on Cast Steel Joints Used in a 385-Meter Super Long-Span Transmission Tower Crossing the Yangtze River
-
摘要: 针对国家重点工程385m超大型长江大跨越输电塔横担-主材连接节点处杆件交汇多、空间关系复杂、荷载条件特殊等特点,首次提出在该大跨越输电塔同类型节点处采用铸钢节点。考虑到铸钢节点外形复杂、重要性程度高等特点,为验证其设计的安全性和合理性,设计了两个1∶2节点缩尺模型并进行承载力性能检验性试验及有限元分析。研究结果表明:90°大风试验工况下节点最大应力区为节点杆件倒角处,其应变随荷载基本呈线性变化,节点整体处于线弹性状态;有限元分析结果与试验结果吻合良好,表明有限元节点模型能真实有效模拟节点实际受力情况;有限元弹塑性分析结果表明该铸钢节点极限承载力为设计荷载的12.39倍,有较大的安全冗余度,节点设计安全可靠。Abstract: In view of the characteristics of many member intersections, complex spatial relations and special load conditions at the connection joint of cross arm and main rods in a 385-meter super long-span transmission tower crossing the Yangtze River, which is a national key project, cast steel joints were proposed to applied in the transmission tower for the first time. Considering the characteristics of complex shape and high importance of cast steel joints, two 1∶2 scaled models of joints were designed and the bearing capacity verification test and finite element analysis were carried out in order to verify its safety and rationality.The results showed that under the 90° gale test condition, the maximum stress location of the joint was the chamfer of the member, the strain basically changed linearly with the load, and the whole joint was in a linear elastic state. The experimental results were in good agreement with the finite element analysis results, which showed that the joint model could truly and effectively simulate the actual stress of the joint. The finite element elastic-plastic analysis results showed that the ultimate bearing capacity of the cast steel joint was 12.39 times of the design load, with a large safety redundancy, and the joint design was safe and reliable.
-
Key words:
- long-span transmission tower /
- cast steel joint /
- scaled experiment /
- FEM analysis
-
[1] 李布辉,陶青松,余亮,等.385m超高长江跨越塔结构设计分析[J].武汉大学学报(工学版),2021,54(增刊2):1-6. [2] 刘锡良,林彦.铸钢节点的工程应用与研究[J].建筑钢结构进展,2004,6(1): 12-19. [3] 戴国欣,李万伟,邢世建,等. 重庆江北国际机场新航站楼大跨钢桁架铸钢节点性能研究[J]. 建筑结构学报,2005,26(4):70-75. [4] 冷钟文,杜新喜,袁焕鑫,等.黄石奥体中心体育场铸钢节点受力性能试验研究[J].建筑钢结构进展,2019,21(3):102-108. [5] 张旭巍.120m跨长江航道模型实验厅铸钢球节点受力性能试验研究[J].施工技术,2014,43(20):68-74. [6] 张卫,李霆,许敏,等.中国动漫博物馆复杂铸钢节点分析与研究[J].建筑结构,2020,50(8):120-126. [7] 陈志华,姜玉挺,闫星宇,等.天津图书馆铸钢节点力学性能[J].天津大学学报(自然科学与工程技术版),2016,49(增刊1):1-9. [8] 施刚,赵华田,荣成骁,等.天津周大福金融中心复杂铸钢节点性能分析[J/L].建筑结构,2022,52(4):81-85. [9] 罗柯镕,佘亮,舒赣平,等.500kV长江大跨越输电塔线体系风致响应分析研究[J].工业建筑,2022,52(8):1-8. [10] 中国国家标准化管理委员会.钢及钢产品力学性能试验取样位置及试样制备: GB/T 2975—2018[S].北京:中国标准出版社,2018. [11] 中国国家标准化管理委员会.金属材料拉伸试验第1部分:室温试验方法: GB/T 228. 1—2010[S]. 北京:中国标准出版社,2010. [12] 袁理明,尹鹏飞,杜新喜,等.武汉天河机场T3航站楼铸钢节点受力性能试验研究[J].建筑结构,2018,48(19):50-54. [13] 中国工程建设标准化协会.铸钢节点应用技术规程:CECS 235∶2008[S].北京:中国计划出版社,2008. [14] 中华人民共和国住房和城乡建设部铸钢结构技术规程: JGJ/T 395—2017[S].北京:中国建筑工业出版社,2017.
点击查看大图
计量
- 文章访问数: 166
- HTML全文浏览量: 20
- PDF下载量: 2
- 被引次数: 0