Deterioration Law of Aeolian Sand Concrete Under Carbonation and Dry-Wet Cycles
-
摘要: 以明确碳化-干湿循环作用下风积沙混凝土表观形态、质量、吸水率、抗压强度等耐久性能指标的损伤劣化规律为目的,将风积沙全部替代普通河砂制备全风积沙混凝土,对其进行碳化试验(碳化龄期为0 d、14 d、28 d),采用外观形貌、抗压强度、质量、吸水率等参数表征风积沙混凝土经历碳化-干湿循环作用下耐久性能损伤劣化规律。结果表明:碳化、干湿循环前期形貌变化较小,后期逐渐出现网状裂缝;随干湿循环次数增加,风积沙混凝土的抗压强度先增加后减小;在干湿循环25次内质量不断增加,其中未碳化混凝土质量增加最多,碳化龄期28 d质量增加最少;碳化作用延缓了表面盐结晶的出现,使风积沙混凝土的抗压强度有所提升,提升了风积沙混凝土在干湿环境下的耐久性。Abstract: In order to clarify the damage deterioration law of durability indexes such as apparent morphology, quality, water absorption and compressive strength of aeolian sand concrete under carbonization and dry-wet cycles, aeolian sand was completely replaced by ordinary river sand to prepare aeolian sand concrete, and its carbonization test (carbonization age was 0 d, 14 d and 28 d) was carried out, apparent morphology, compressive strength, quality, water absorption and other parameters were used to characterize the deterioration law of durability of aeolian sand concrete under carbonation and dry-wet cycles. The results showed that the morphology changed little in the early stage of carbonization and dry-wet cycles, and network cracks gradually appeared in the later stage; with the increase of dry-wet cycles, the compressive strength of aeolian sand concrete first increased and then decreased; the mass of non carbonated concrete increased the most in 25 seconds of dry-wet cycles, and the mass of carbonated concrete increased the least in 28 days of carbonation age; carbonation delayed the occurrence time of surface salt crystallization, improved the compressive strength of aeolian sand concrete, as well as the durability of aeolian sand concrete in dry and wet environment.
-
Key words:
- aeolian sand concrete /
- dry-wet cycle /
- carbonization /
- compressive strength /
- durability /
- water absorption
-
[1] 董伟,肖阳,苏英,等.风积沙混凝土轴心受压力学性能研究[J].工程科学与技术,2020,52(3):86-92. [2] 李玉根,张慧梅.风积砂混凝土基本力学性能及影响机理[J].建筑材料学报,2020,23(5):1212-1221. [3] 张金喜,冉晋,马宝成,等.碳化对混凝土抗冻性的影响及机理[J].建筑材料学报,2017,20(1):12-17. [4] 韩学强,詹树林,徐强,等.干湿循环作用对混凝土抗氯离子渗透侵蚀性能的影响[J].复合材料学报,2020,37(1):198-204. [5] 谷慧,李全旺,侯冠杰.碳化环境下混凝土结构耐久性模型的更新方法[J].工程力学,2021,38(5):113-121. [6] 元成方,牛荻涛,齐广政.干湿循环机制下碳化混凝土氯离子侵蚀试验研究[J].西安建筑科技大学学报(自然科学版),2012,44(3):339-344. [7] YE H L, JIN X Y,FU C q,et al.Chloride penetration in concrete exposed to cyclic drying-wetting and carbonation[J].Construction and Building Materials,2016,112:457-463. [8] 牛荻涛,孙丛涛.混凝土碳化与氯离子侵蚀共同作用研究[J].硅酸盐学报,2013,41(8):1094-1099. [9] WU J, ZHANG Y S, ZHU P H, et al.Mechanical properties and ITZ microstructure of recycled aggregate concrete using carbonated recycled coarse aggregate[J].Journal of Wuhan University of Technology(Materials Science),2018,33(3):648-653. [10] XUAN D,ZHAN,POON C S.Durability of recycled aggregate concrete prepared with carbonated recycled concrete aggregates[J].Cement and Concrete Composites,2017,44(9):514-521. [11] 金南国,徐亦斌,付传清,等.荷载、碳化和氯盐侵蚀对混凝土劣化的影响[J].硅酸盐学报,2015,43(10):1483-1491. [12] 杨礼明,余红发,麻海燕,等.混凝土在碳化和干湿循环作用下的抗硫酸盐腐蚀性能[J].复合材料学报,2012,29(5):127-133. [13] 张士萍,张厚先,费正岳,等.碳化环境下混凝土的耐久性能研究[J].硅酸盐通报,2014,33(8):1870-1873. [14] 张廷毅,汪自力,郑光和,等.碳化与硫酸盐溶液干湿循环后混凝土断裂韧度[J].水利学报,2016,47(8):1062-1069. [15] 刘娟红,马虹波,周昱程,等.硫酸盐干湿循环环境下超深井井壁混凝土抗腐蚀性能[J].材料导报,2021,35(12):12081-12086. [16] 董瑞鑫,申向东,薛慧君,等.干湿循环与风沙吹蚀作用下风积沙混凝土的抗硫酸盐耐久性[J].材料导报,2020,34(20):20053-20060. [17] 董瑞鑫,申向东,薛慧君,等.干湿循环作用下风积沙混凝土的抗硫酸盐侵蚀机理[J].材料导报,2020,34(24):24040-24044. [18] CHANG H,JIN Z,ZHAO T,et al.Capillary suction induced water absorption and chloride transport in non-saturated concrete:The influence of humidity, mineral admixtures and sulfate ions[J].Construction & Building Materials,2020,236.DOI: 10.1016/j.conbuildmat.2019.117581. [19] VAN A J J, A TAHER Z, ARENDS T.Modelling of water and chloride transport in concrete during yearly wetting/drying cycles[J]. Construction & Building Materials,2015, 81(15):120-129. [20] 高原.干湿环境下混凝土收缩与收缩应力研究[D].北京;清华大学,2013.
点击查看大图
计量
- 文章访问数: 94
- HTML全文浏览量: 19
- PDF下载量: 0
- 被引次数: 0