Oblique Uplift Bearing Characteristics of Rigid Anchor Piles in Dense Sand
-
摘要: 刚性锚桩作为海洋结构系泊系统重要基础形式之一,常承受斜向拉拔荷载作用,其斜向抗拔承载机理相对柔性桩要更为复杂。通过数值模拟和理论分析,针对加载方式、桩土界面摩擦系数对锚桩斜向抗拔承载力的影响展开研究。基于有限元数值模型,获得不同加载方式、摩擦系数的锚桩破坏包络面,发现锚桩斜向抗拔承载力受加载方式影响较为明显;受Mohr-Coulomb模型的局限,数值模型较难准确模拟粗糙锚桩的竖向抗拔承载行为;随着摩擦系数的增大,锚桩竖向抗拔承载力会因破裂面向桩周土内部发展而增大;基于桩侧土抗力反"S"形分布假设计算所得的锚桩水平向承载力相对准确。最终建立了考虑桩土界面摩擦系数的刚性锚桩斜向抗拔破坏包络面模型。Abstract: As one of the important foundation types of mooring systems in marine structures, rigid anchor piles often bear oblique upward pulling loads, and the mechanism of oblique uplift resistance is more complex than that of flexible piles. Through numerical simulations and theoretical analysis, the influence of loading modes and pile-soil interface friction coefficients on the oblique uplift capacity of anchor piles was studied. Based on the finite element numerical model, the failure envelope surfaces of anchor piles in different loading modes and friction coefficients were obtained, and it was found that the oblique uplift capacity of anchor piles was significantly influenced by loading modes. Due to the limitation of Mohr-Coulomb Constitutive Model, it was difficult for numerical models to accurately simulate the vertical uplift properties of anchor piles with rough appearances. With the increase of friction coefficients, the vertical uplift capacity of anchor piles increased because of the development of fracture toward soil around piles. The horizontal bearing capacity of anchor piles was relatively accurate calculated by the S-shaped distribution hypothesis of soil resistance. Finally, an envelope model of rigid anchor piles was constructed considering the friction coefficients of pile-soil interfaces.
-
[1] 刘浩晨, 国振, 王立忠, 等.漂浮式水上光伏电站锚泊系统设计方法[J]. 太阳能学报, 2019, 40(12):3485-3492. [2] HAJI M, KLUGER J, CARRUS J, et al. Experimental investigation of hydrodynamic response of an ocean uranium extraction machine attached to a floating wind turbine[J]. International Journal of Offshore and Polar Engineering, 2018, 28(3):225-231. [3] RANDOLPH M, GOURVENEC S. Offshore geotechnical engineering [M].Boca Raton:CRC Press, 2017. [4] 叶邦全.海洋工程用锚类型及其发展综述[J].船舶与海洋工程,2012(3):1-7. [5] 张勋, 黄茂松, 刘莹.考虑砂土密实度影响的单桩竖向循环加载模型试验[J]. 岩土力学, 2016, 37(7):1914-1920. [6] UKRITCHON B, KEAWSAWASVONG S.Design equations of uplift capacity of circular piles in sands[J/OL]. Applied Ocean Research, 2019, 90[2022-01-19].https://doi.org/10.1016/J.APOR.2019.06.001. [7] BUCKLEY R M, JARDINE R J, KONTOE S, et al. Ageing and cyclic behaviour of axially loaded piles driven in chalk[J]. Géotechnique, 2018, 68(2):146-161. [8] CHIOU J S, XU Z W, TSAI C C, et al. Lateral cyclic response of an aluminum model pile in sand[J]. Marine Georesources & Geotechnology, 2017, 36(5): 554-563. [9] TRUONG P, LEHANE B M, ZANIA V, et al. Empirical approach based on centrifuge testing for cyclic deformations of laterally loaded piles in sand[J]. Géotechnique, 2018, 69(2): 133-145. [10] 白云, 李大勇, 吴宇旗, 等. 倾斜荷载作用下裙式吸力基础承载特性研究[J]. 广西大学学报(自然科学版), 2018, 43(1):205-211. [11] RAMADAN M F, BUTT S D, POPESCU R. Offshore anchor piles under mooring forces: centrifuge modeling[J].Canadian Geotechnical Journal, 2013, 50(4): 373-381. [12] KONG G, ZHOU H, SUN X, et al. Analysis of piles under oblique pullout load using transparent-soil models[J]. Geotechnical Testing Journal, 2015, 38(5): 725-738. [13] CAO Z, LIU H, KONG G, et al. Physical modelling of pipe piles under oblique pullout loads using transparent soil and particle image velocimetry [J]. Journal of Central South University, 2015, 22(11): 4329-4336. [14] 潘志杰,俞剑,王博伟.砂土中单桩倾斜向抗拔加载试验研究[J].建筑科学, 2020, 36(增刊1):88-93. [15] HUANG T, O'LOUGHLIN C, GAUDIN C, et al. Drained responseof rigid piles in sand under an inclined tensile load[J]. Géotechnique Letters, 2020, 10(1): 30-37. [16] 张苇, 杜湧, 高建财, 等. 砂土中吸力式单桩极限抗斜拉承载力计算[J]. 广西大学学报(自然科学版), 2018, 43(1):232-239. [17] BRANSBY M F, RANDOLPH M F. Combined loading of skirted foundations[J]. Géotechnique, 1998, 48(5): 637-655. [18] LU W, ZHANG G. Influence mechanism of vertical-horizontal combined loads on the response of a single pile in sand[J]. Soils and Foundations, 2018, 58(5): 1228-1239. [19] 刘润, 祁越, 李宝仁, 等. 复合加载模式下单桩复合筒型基础地基承载力包络线研究[J]. 岩土力学. 2016,37(5): 1486-1496. [20] POULOS H G, DAVIS E H. Pile foundation analysis and design[M].New York:John Wiley and Sons, 1980. [21] BOLTON M D. The strength and dilatancy of sands[J]. Geotechnique, 1986, 36(1): 65-78. [22] TIAN Y, ZHENG T, ZHOU T, et al. A new method to investigate the failure envelopes of offshore foundations[C/OL]//ASME 201635th International Conference on Ocean, Offshore and Arctic Engineering,2016[ 2022-01-19].https://doi.org/10.1115/OMAE2016-54513. [23] ZHANG L, FRANCISCO S, RALPH G. Ultimate lateral resistance to piles in cohesionless soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(1):78-83. [24] BANG S, JONES K D, KIM K O, et al. Inclined loading capacity of suction piles in sand[J]. Ocean Engineering, 2011, 38(7):915-924.
点击查看大图
计量
- 文章访问数: 52
- HTML全文浏览量: 2
- PDF下载量: 5
- 被引次数: 0