Influence of the Montmorillonite Content and Soil State on Shrinkage Characteristics of Expansive Soil
-
摘要: 为研究不同含量蒙脱石和土体状态对膨胀土收缩特性的影响,采用能够反映土体状态的试样(泥浆样、预固结样和压实样)进行收缩特性试验。试验结果表明:随着蒙脱石含量的增大,泥浆样的收缩变形逐渐增大;预固结样在蒙脱石含量在某一范围时,收缩变形相差不大,随着蒙脱石含量的增大,预固结样会产生明显的收缩变形;对于泥浆样和预固结样,当蒙脱石含量超过一定值时,土体收缩特性曲线(SSCC)残余收缩段的曲率会不断减小;对比图解缩限,计算缩限更接近真实缩限,当SSCC为一条折线时,计算缩限与图解缩限相等;蒙脱石含量对膨胀土收缩特性的影响要大于土体状态。Abstract: To study the influence of the montmorillonite content and soil state on the shrinkage characteristics of expansive soil, shrinkage characteristic tests were conducted on specimens which reflected soil state (in the slurry state, after consolidation, and in compaction state). The test results indicated as the montmorillonite content increased, the shrinkage deformation of the slurry specimens gradually increased, and as the montmorillonite content in pre-consolidated specimens was in a certain range, the differences of shrinkage deformation between specimens were not much, as the montmorillonite content increased to a certain amount, the pre-consolidated specimens would produce obvious shrinkage deformation. For slurry specimens and pre-consolidated specimens, when the montmorillonite content exceeded a specific value, the curvature in the residual shrinkage stage of soil shrinkage characteristic curves (SSCC) would constantly decrease. Comparing with the shrinkage limit obtained from the graphic method, the calculated values was closer to the actual value. When the SSCC was a broken line, the calculated shrinkage limit equaled to the value by the graphic method. The influence of the montmorillonite content on the shrinkage characteristics of expansive soil was greater than that of the soil state.
-
Key words:
- expansive soil /
- montmorillonite content /
- soil state /
- shrinkage characteristics /
- shrinkage limit
-
[1] 姚海林, 郑少河, 陈守义. 考虑裂隙及雨水入渗影响的膨胀土边坡稳定性分析[J]. 岩土工程学报, 2001, 23(5): 606-609. [2] TAN Y, ZHANG H Y, WANG Y. Evaporation and shrinkage processes of compacted bentonite-sand mixtures[J]. Soils and Foundations, 2020, 60(2): 505-519. [3] YESILLER N, MILLER CJ, INCI G, et al. Desiccation and cracking behavior of three compacted landfill liner soils[J]. Engineering Geology, 2000, 57(1/2): 105-121. [4] 张琦. 膨胀土干燥收缩特性试验研究[D]. 南京: 南京大学, 2014. [5] 栾茂田, 汪东林, 杨庆, 等. 非饱和重塑土的干燥收缩试验研究[J]. 岩土工程学报, 2008, 30(1): 118-122. [6] 吴珺华, 袁俊平, 杨松, 等. 膨胀土湿胀干缩特性试验[J]. 水利水电科技进展, 2012, 32(3): 28-31. [7] 赵贵涛, 韩仲, 邹维列, 等. 干湿、冻融循环对膨胀土土-水及收缩特征的影响[J]. 岩土工程学报, 2021, 43(6): 1139-1146. [8] 刘观仕, 陈永贵, 曾宪云, 等. 环境湿度与温度对压实膨胀土裂隙发育影响试验研究[J]. 岩土工程学报, 2018, 42(2): 260-268. [9] 杨俊, 许威. 冻融循环下风化砂改良膨胀土有荷膨胀率试验及模型预估[J]. 工业建筑, 2015,45(1): 113-117. [10] 王艳涛, 程谦恭, 王小芳, 等. 石灰改良膨胀土高铁路堤离心模型对比试验研究[J]. 工业建筑, 2017, 47(7): 96-101. [11] 刘宇翼, 周国庆, 苏运河, 等. 聚苯乙烯泡沫塑料颗粒-膨胀土混合料的胀缩特性试验研究[J]. 工业建筑, 2017, 47(5): 90-95. [12] 汪亦显, 郭盼盼, 单生彪, 等. 合肥膨胀土阳离子改良试验及微观机制分析[J]. 工业建筑, 2015, 45(9): 104-109. [13] 顾鹏, 徐洪钟, 孙义杰, 等. 基于分布式应变感测的纤维加筋膨胀土干缩湿胀特性试验[J]. 南京工业大学学报(自然科学版), 2018, 40(5): 112-117. [14] CHERTKOV V Y. Modelling the shrinkage curve of soil clay pastes[J]. Geoderma, 2003, 112(1/2): 71-95. [15] GROENEVELT P H, GRANT C D. Curvature of shrinkage lines in relation to the consistency and structure of a Norwegian clay soil[J]. Geoderma, 2002, 106(3/4): 235-245. [16] CORNELIS W M, CORLUY J, MEDINA H, et al. A simplified parametric model to describe the magnitude and geometry of soil shrinkage[J]. European Journal of Soil Science, 2010, 57(2): 258-268. [17] DAO M H, 刘清秉, 黄伟,等. 膨润土加砂混合物干燥收缩特征及缩裂机制研究[J]. 岩土力学, 2020, 41(3): 789-798. [18] 孙德安, 高游. 不同制样方法非饱和土的持水特性研究[J]. 岩土工程学报, 2015, 37(1): 91-97. [19] 唐朝生, 崔玉军, Tang A M, 等. 土体干燥过程中的体积收缩变形特征[J]. 岩土工程学报, 2011, 33(8): 1271-1279. [20] 郑军, 阎长虹, 夏良斌, 等. 苏州阳澄湖地区淤泥质黏土工程地质特性探讨[J]. 工程地质学报, 2006, 14(5): 592-596. [21] 黄志全, 樊柱军, 潘向丽, 等. 水位变化下膨胀土岸坡渗流场和稳定性分析[J]. 人民黄河, 2012, 34(1): 120-122. [22] GROENEVELT P H, GRANT C D. Analysis of soil shrinkage data[J]. Soil & Tillage Research, 2004, 79(1): 71-77.
点击查看大图
计量
- 文章访问数: 84
- HTML全文浏览量: 13
- PDF下载量: 4
- 被引次数: 0