Wind Disaster Vulnerability Study of High-Rise Lightning Rods in Substations
-
摘要: 针对变电站高耸避雷针的风致倒塌事故,以一代表性工程为例展开风灾易损性分析,以明确结构的抗风安全性。采用结构拉丁超立方抽样和脉动风场模拟以同时考虑结构和风荷载作用的随机性,通过考虑材料非线性的静力Pushover计算和增量动力时程计算获取结构静动力响应;在基于性能的分析框架下,确定结构顶端位移为损伤指标并给出了4种性能水准的量化值;通过对结构响应需求与荷载强度的回归分析和易损性函数获得易损性曲线,明确了结构的抗风性能。另外,对结构响应需求与荷载强度的回归拟合方式也进行了讨论,认为双对数形式更为合理。Abstract: Wind disaster vulnerability study was carried out to evaluate the reliability of high-rise lightning rods in substations, due to the accidents induced by wind storms, in which a representative high-rise lightning rod was selected as an example. Latin hypercube sampling and fluctuating wind field simulation were adopted to generate structure samples and wind velocity history samples to incorporate their randomness simultaneously. Static pushover analysis and incremental dynamic time-history analysis, both considering the material nonlinearity, were conducted to obtain the static and dynamic responses respectively. The performance quantized values of four different damage levels were determined according to the top displacement. The valuerability curve was obtained through regression analysis of structural response requiements and load intensity, as well as the vulnarability function, so as to clarify the wind resistance of the structure. In addition, the regression analysis method was discussed in the fitting of the structural response requrements and load intensity, it was found that the double logarithmic form was more reasonable.
-
[1] 董新胜, 张军锋, 杨洋, 等. 变电站高耸避雷针顺风向风振响应分析[J]. 结构工程师, 2020, 36(2):144-148. [2] NIELSON B. Analytical fragility curves for highway bridges in moderate seismic zones[D]. Atlanta:Georgia Institute of Technology, 2005. [3] 吴文朋. 考虑不确定性的钢筋混凝土桥梁地震易损性研究[D]. 长沙:湖南大学, 2016. [4] 安水晶. 单立柱广告牌结构风灾易损性研究[D]. 哈尔滨:哈尔滨工业大学, 2009. [5] 李宏男, 李钢, 郑晓伟, 等. 工程结构在多灾害耦合作用下的研究进展[J]. 土木工程学报, 2021, 54(5):1-14. [6] 肖端. 基于性能的输电塔线体系风灾易损性分析[D]. 武汉:华中科技大学, 2015. [7] 王弘洋. 动力荷载作用下输电塔线体系易损性研究[D]. 武 汉:武汉理工大学, 2020. [8] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范:GB 50009-2012[S]. 北京:中国建筑工业出版社, 2012. [9] 张军锋, 涂保中, 刘庆帅, 等. 谐波合成法脉动风模拟时间步长的取值[J]. 重庆交通大学学报(自然科学版), 2020, 39 (2):62-68. [10] CHOI E, DESROCHES R, NIELSON B. Seismic fragility of typical bridges in moderate seismic zones[J]. Engineering Structures, 2004, 26(2):187-199. [11] 李宏男, 郑晓伟, 李超. 高性能结构抗多次多种灾害全寿命性能分析与设计理论研究进展[J]. 建筑结构学报, 2019, 40(2):56-69. [12] HWANG H, 刘晶波. 地震作用下钢筋混凝土桥梁结构易损性分析[J]. 土木工程学报, 2004, 37(6):47-51. [13] 谢丽宇, 唐珏, 谢强, 等. 基于性能的输电塔地震易损性分析[J]. 特种结构, 2014, 31(1):104-108,68. [14] 梁岩, 朱江南, 朱仁慧, 等. 高强钢筋ECC-RC复合桥梁地震易损性分析[J]. 世界地震工程, 2021, 37(3):85-93. [15] 葛义娇. 输电塔结构风灾易损性研究[D]. 苏州:苏州科技学院, 2014. [16] 中华人民共和国住房和城乡建设部. 钢结构设计标准:GB 50017-2017[S]. 北京:中国建筑工业出版社, 2018. [17] 钱稼茹, 罗文斌. 静力弹塑性分析:基于性能/位移抗震设计的分析工具[J]. 建筑结构, 2000, 30(6):23-26. [18] 俞登科, 李正良, 韩枫, 等. 基于性能目标的特高压输电塔抗风可靠度分析[J]. 防灾减灾工程学报, 2013, 33(6):657-662. [19] 韩枫. 特高压输电塔线体系的抗风可靠度研究[D]. 重庆:重庆大学, 2012. [20] 冯浩琪. 盐渍土环境下输电塔风灾易损性分析[D]. 郑州:郑州大学, 2021. [21] 黄明刚. 钢筋混凝土连续梁桥的地震易损性、危险性及风险分析[D]. 哈尔滨:哈尔滨工业大学, 2009. [22] 王海良, 张铎, 王剑, 等. 基于IDA的钢管混凝土空间组合桁架连续梁桥抗震易损性分析[J]. 世界地震工程, 2015, 31(2):76-86. [23] 刘学敏, 王国新. 低层无筋砌体基于性能的强风易损性分析[J]. 防灾减灾学报, 2016, 32(2):40-45. [24] 高楠. 村镇装配式框架结构在风荷载作用下的易损性分析[D]. 大连:大连理工大学, 2021. [25] CORNELL C A, JALAYER F, HAMBURGER R O, et al. Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines[J]. Journal of Structural Engineering, 2002, 128(4):526-533.
点击查看大图
计量
- 文章访问数: 79
- HTML全文浏览量: 6
- PDF下载量: 3
- 被引次数: 0